基于成本效益分析的有害信息传播控制隐影响节点选择

IF 1.8 4区 管理学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Information Science Pub Date : 2023-09-08 DOI:10.1177/01655515231193853
Zhaoli Liu, Qindong Sun, Shancang Li, Zhihai Yang, Beibei Zhang
{"title":"基于成本效益分析的有害信息传播控制隐影响节点选择","authors":"Zhaoli Liu, Qindong Sun, Shancang Li, Zhihai Yang, Beibei Zhang","doi":"10.1177/01655515231193853","DOIUrl":null,"url":null,"abstract":"The quick development of mobile network and smart devices provides a convenience way for information sharing in online social networks, which also accelerates the propagation of harmful information, thus how to select the hidden influential nodes with lower management cost for reducing the propagation speed of harmful information is an important task. In this article, we propose a greedy hidden influential node selection algorithm based on the epidemic model and cost–benefit analysis. First, we investigate the user behaviour dynamic characteristics from two perspectives of social relationships and interaction behaviours, and then susceptible and infected (SI) epidemic model is applied and user influence is estimated. Second, considering the management cost and benefit of different users, a greedy hidden influential node selection algorithm based on the cost–benefit analysis is proposed. Finally, a series of experiments are conducted using the public social network data set and the data set collected from Sina Weibo, to verify the performance and practicality of the developed method. The experimental results demonstrate that our method outperforms other related methods in harmful information propagation control.","PeriodicalId":54796,"journal":{"name":"Journal of Information Science","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hidden influential node selection based on cost–benefit analysis for harmful information propagation control\",\"authors\":\"Zhaoli Liu, Qindong Sun, Shancang Li, Zhihai Yang, Beibei Zhang\",\"doi\":\"10.1177/01655515231193853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quick development of mobile network and smart devices provides a convenience way for information sharing in online social networks, which also accelerates the propagation of harmful information, thus how to select the hidden influential nodes with lower management cost for reducing the propagation speed of harmful information is an important task. In this article, we propose a greedy hidden influential node selection algorithm based on the epidemic model and cost–benefit analysis. First, we investigate the user behaviour dynamic characteristics from two perspectives of social relationships and interaction behaviours, and then susceptible and infected (SI) epidemic model is applied and user influence is estimated. Second, considering the management cost and benefit of different users, a greedy hidden influential node selection algorithm based on the cost–benefit analysis is proposed. Finally, a series of experiments are conducted using the public social network data set and the data set collected from Sina Weibo, to verify the performance and practicality of the developed method. The experimental results demonstrate that our method outperforms other related methods in harmful information propagation control.\",\"PeriodicalId\":54796,\"journal\":{\"name\":\"Journal of Information Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/01655515231193853\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/01655515231193853","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

移动网络和智能设备的快速发展为在线社交网络中的信息共享提供了便利的方式,同时也加速了有害信息的传播,因此如何以更低的管理成本选择隐藏的有影响的节点来降低有害信息的传播速度是一个重要的任务。本文提出了一种基于流行病模型和成本效益分析的贪婪隐藏影响节点选择算法。首先从社会关系和交互行为两个角度考察用户行为动态特征,然后应用易感感染(SI)流行模型,估算用户影响。其次,考虑不同用户的管理成本和效益,提出了一种基于成本效益分析的贪婪隐藏影响节点选择算法。最后,利用公共社交网络数据集和新浪微博数据集进行了一系列实验,验证了所开发方法的性能和实用性。实验结果表明,该方法在控制有害信息传播方面优于其他相关方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hidden influential node selection based on cost–benefit analysis for harmful information propagation control
The quick development of mobile network and smart devices provides a convenience way for information sharing in online social networks, which also accelerates the propagation of harmful information, thus how to select the hidden influential nodes with lower management cost for reducing the propagation speed of harmful information is an important task. In this article, we propose a greedy hidden influential node selection algorithm based on the epidemic model and cost–benefit analysis. First, we investigate the user behaviour dynamic characteristics from two perspectives of social relationships and interaction behaviours, and then susceptible and infected (SI) epidemic model is applied and user influence is estimated. Second, considering the management cost and benefit of different users, a greedy hidden influential node selection algorithm based on the cost–benefit analysis is proposed. Finally, a series of experiments are conducted using the public social network data set and the data set collected from Sina Weibo, to verify the performance and practicality of the developed method. The experimental results demonstrate that our method outperforms other related methods in harmful information propagation control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Information Science
Journal of Information Science 工程技术-计算机:信息系统
CiteScore
6.80
自引率
8.30%
发文量
121
审稿时长
4 months
期刊介绍: The Journal of Information Science is a peer-reviewed international journal of high repute covering topics of interest to all those researching and working in the sciences of information and knowledge management. The Editors welcome material on any aspect of information science theory, policy, application or practice that will advance thinking in the field.
期刊最新文献
Government chatbot: Empowering smart conversations with enhanced contextual understanding and reasoning Knowing within multispecies families: An information experience study How are global university rankings adjusted for erroneous science, fraud and misconduct? Posterior reduction or adjustment in rankings in response to retractions and invalidation of scientific findings Predicting the technological impact of papers: Exploring optimal models and most important features Cross-domain corpus selection for cold-start context
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1