{"title":"用于抗多重耐药微生物的芦荟共轭银纳米颗粒的合成","authors":"Hammad Arshad , Misbah Saleem , Usman Pasha , Saima Sadaf","doi":"10.1016/j.ejbt.2021.11.003","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The emergence of multidrug-resistant (MDR) microorganisms is one of the biggest and most challenging public health issues drawing considerable attention of the scientific community. Here, we present an easy, one-step, inexpensive and ecofriendly/biologically mediated synthesis of <em>Aloe vera</em>-conjugated silver nanoparticles (Av-AgNPs) where the aqueous plant extract acts as a reducing and stabilizing agent and the resultant conjugate exhibits remarkable potential to limit/inhibit the growth of MDR pathogens.</p></div><div><h3>Results</h3><p>The nanosynthesis concluded in 4–6 h at 65°C and was followed by detailed characterization of the bioconjugated Av-AgNPs (with and without fabrication on cellulosic materials i.e., cotton fabric and filter paper) using a combination of UV–visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), x-ray diffraction (XRD) and inductively coupled plasma optical emission spectroscopy (ICP-OES). The so-characterized NPs showed growth inhibitory effects on multiple strains including the Gram-positive <em>Staphylococcus aureus</em>, Gram-negative <em>Escherichia coli (E. coli)</em>, <em>Acinetobacter baumannii (A. baumannii), Pseudomonas aeruginosa (P. pseudomonas)</em> and, more importantly, the fungus <em>Candida albicans (C. albicans)</em>, when analyzed using the Kirby-Bauer method. A notable reduction in the colony-forming unit (CFU) counts of the <em>E. coli</em> (present in contaminated drinking water) was also observed when the filter paper encrusted with Av-AgNPs was applied as a filtration material.</p></div><div><h3>Conclusions</h3><p>In conclusion, the biofabricated Av-AgNPs are easy to synthesize and are a cost-effective alternative to inorganic AgNPs, with considerable antimicrobial activity, deserving further investigations for biomedical applications.</p><p><strong>How to cite:</strong> Arshad H, Saleem M, Pasha U, et al. Synthesis of <em>Aloe vera</em>-conjugated silver nanoparticles for use against multidrug-resistant microorganisms. Electron J Biotechnol 2022;55. https://doi.org/10.1016/j.ejbt.2021.11.003</p></div>","PeriodicalId":11529,"journal":{"name":"Electronic Journal of Biotechnology","volume":"55 ","pages":"Pages 55-64"},"PeriodicalIF":2.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S071734582100052X/pdfft?md5=26a212418d2be5b6951756e3ee02b999&pid=1-s2.0-S071734582100052X-main.pdf","citationCount":"13","resultStr":"{\"title\":\"Synthesis of Aloe vera-conjugated silver nanoparticles for use against multidrug-resistant microorganisms\",\"authors\":\"Hammad Arshad , Misbah Saleem , Usman Pasha , Saima Sadaf\",\"doi\":\"10.1016/j.ejbt.2021.11.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>The emergence of multidrug-resistant (MDR) microorganisms is one of the biggest and most challenging public health issues drawing considerable attention of the scientific community. Here, we present an easy, one-step, inexpensive and ecofriendly/biologically mediated synthesis of <em>Aloe vera</em>-conjugated silver nanoparticles (Av-AgNPs) where the aqueous plant extract acts as a reducing and stabilizing agent and the resultant conjugate exhibits remarkable potential to limit/inhibit the growth of MDR pathogens.</p></div><div><h3>Results</h3><p>The nanosynthesis concluded in 4–6 h at 65°C and was followed by detailed characterization of the bioconjugated Av-AgNPs (with and without fabrication on cellulosic materials i.e., cotton fabric and filter paper) using a combination of UV–visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), x-ray diffraction (XRD) and inductively coupled plasma optical emission spectroscopy (ICP-OES). The so-characterized NPs showed growth inhibitory effects on multiple strains including the Gram-positive <em>Staphylococcus aureus</em>, Gram-negative <em>Escherichia coli (E. coli)</em>, <em>Acinetobacter baumannii (A. baumannii), Pseudomonas aeruginosa (P. pseudomonas)</em> and, more importantly, the fungus <em>Candida albicans (C. albicans)</em>, when analyzed using the Kirby-Bauer method. A notable reduction in the colony-forming unit (CFU) counts of the <em>E. coli</em> (present in contaminated drinking water) was also observed when the filter paper encrusted with Av-AgNPs was applied as a filtration material.</p></div><div><h3>Conclusions</h3><p>In conclusion, the biofabricated Av-AgNPs are easy to synthesize and are a cost-effective alternative to inorganic AgNPs, with considerable antimicrobial activity, deserving further investigations for biomedical applications.</p><p><strong>How to cite:</strong> Arshad H, Saleem M, Pasha U, et al. Synthesis of <em>Aloe vera</em>-conjugated silver nanoparticles for use against multidrug-resistant microorganisms. Electron J Biotechnol 2022;55. https://doi.org/10.1016/j.ejbt.2021.11.003</p></div>\",\"PeriodicalId\":11529,\"journal\":{\"name\":\"Electronic Journal of Biotechnology\",\"volume\":\"55 \",\"pages\":\"Pages 55-64\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S071734582100052X/pdfft?md5=26a212418d2be5b6951756e3ee02b999&pid=1-s2.0-S071734582100052X-main.pdf\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S071734582100052X\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S071734582100052X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Synthesis of Aloe vera-conjugated silver nanoparticles for use against multidrug-resistant microorganisms
Background
The emergence of multidrug-resistant (MDR) microorganisms is one of the biggest and most challenging public health issues drawing considerable attention of the scientific community. Here, we present an easy, one-step, inexpensive and ecofriendly/biologically mediated synthesis of Aloe vera-conjugated silver nanoparticles (Av-AgNPs) where the aqueous plant extract acts as a reducing and stabilizing agent and the resultant conjugate exhibits remarkable potential to limit/inhibit the growth of MDR pathogens.
Results
The nanosynthesis concluded in 4–6 h at 65°C and was followed by detailed characterization of the bioconjugated Av-AgNPs (with and without fabrication on cellulosic materials i.e., cotton fabric and filter paper) using a combination of UV–visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), x-ray diffraction (XRD) and inductively coupled plasma optical emission spectroscopy (ICP-OES). The so-characterized NPs showed growth inhibitory effects on multiple strains including the Gram-positive Staphylococcus aureus, Gram-negative Escherichia coli (E. coli), Acinetobacter baumannii (A. baumannii), Pseudomonas aeruginosa (P. pseudomonas) and, more importantly, the fungus Candida albicans (C. albicans), when analyzed using the Kirby-Bauer method. A notable reduction in the colony-forming unit (CFU) counts of the E. coli (present in contaminated drinking water) was also observed when the filter paper encrusted with Av-AgNPs was applied as a filtration material.
Conclusions
In conclusion, the biofabricated Av-AgNPs are easy to synthesize and are a cost-effective alternative to inorganic AgNPs, with considerable antimicrobial activity, deserving further investigations for biomedical applications.
How to cite: Arshad H, Saleem M, Pasha U, et al. Synthesis of Aloe vera-conjugated silver nanoparticles for use against multidrug-resistant microorganisms. Electron J Biotechnol 2022;55. https://doi.org/10.1016/j.ejbt.2021.11.003
期刊介绍:
Electronic Journal of Biotechnology is an international scientific electronic journal, which publishes papers from all areas related to Biotechnology. It covers from molecular biology and the chemistry of biological processes to aquatic and earth environmental aspects, computational applications, policy and ethical issues directly related to Biotechnology.
The journal provides an effective way to publish research and review articles and short communications, video material, animation sequences and 3D are also accepted to support and enhance articles. The articles will be examined by a scientific committee and anonymous evaluators and published every two months in HTML and PDF formats (January 15th , March 15th, May 15th, July 15th, September 15th, November 15th).
The following areas are covered in the Journal:
• Animal Biotechnology
• Biofilms
• Bioinformatics
• Biomedicine
• Biopolicies of International Cooperation
• Biosafety
• Biotechnology Industry
• Biotechnology of Human Disorders
• Chemical Engineering
• Environmental Biotechnology
• Food Biotechnology
• Marine Biotechnology
• Microbial Biotechnology
• Molecular Biology and Genetics
•Nanobiotechnology
• Omics
• Plant Biotechnology
• Process Biotechnology
• Process Chemistry and Technology
• Tissue Engineering