Daniel J. Colopietro, Julio Pachon, A. Bacon, P. Inglett, Laura Reynolds, C. Rohal
{"title":"用激光衍射法评价有机土壤材料粒度的方法参数","authors":"Daniel J. Colopietro, Julio Pachon, A. Bacon, P. Inglett, Laura Reynolds, C. Rohal","doi":"10.1002/saj2.20588","DOIUrl":null,"url":null,"abstract":"The recognition that texture is a “master soil property” points towards the need for actual quantification of particle size in organic soil material. Using a multi‐wave particle size analyzer, fibric and sapric soil samples were circulated in deionized water through a closed aqueous loop at 9.6 L min−1 and the following methodological parameters were investigated: pre‐treatment, circulation time, and refractive index. Our results show that pre‐treatment for organic soil samples is dependent upon the degree of decomposition; the intact and dispersed PSDs for fibrous samples were not different, whereas the PSDs for sapric samples showed a shift from 500 to 2000 (intact) μm to 5 to 100 (dispersed) μm. Circulation time was investigated using mean particle diameter and specific surface area. We demonstrated that as circulation time increased, the mean particle diameter decreased and the specific surface area increased out to 30 minutes as mechanical dispersion and/or the fragmentation of organic particles occurred. However, circulation time after 5 minutes is not significantly different in terms of mean particle diameter. To investigate refractive index, 12 optical models were created. When determined across all intact samples, uncertainty was low within individual bins, with a maximum value of 0.07 ± 0.04% v/v. For dispersed samples, uncertainty increased within the silt sized region and had a maximum value of 0.17 ± 0.07% v/v. This study demonstrates that the particle diameter of organic soil material can be measured by LD with comparable certainty as mineral soil material using the methodological approach in this study.This article is protected by copyright. All rights reserved","PeriodicalId":22142,"journal":{"name":"Soil Science Society of America Journal","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating Methodological Parameters to Quantify Particle Size of Organic Soil Material with Laser Diffraction\",\"authors\":\"Daniel J. Colopietro, Julio Pachon, A. Bacon, P. Inglett, Laura Reynolds, C. Rohal\",\"doi\":\"10.1002/saj2.20588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recognition that texture is a “master soil property” points towards the need for actual quantification of particle size in organic soil material. Using a multi‐wave particle size analyzer, fibric and sapric soil samples were circulated in deionized water through a closed aqueous loop at 9.6 L min−1 and the following methodological parameters were investigated: pre‐treatment, circulation time, and refractive index. Our results show that pre‐treatment for organic soil samples is dependent upon the degree of decomposition; the intact and dispersed PSDs for fibrous samples were not different, whereas the PSDs for sapric samples showed a shift from 500 to 2000 (intact) μm to 5 to 100 (dispersed) μm. Circulation time was investigated using mean particle diameter and specific surface area. We demonstrated that as circulation time increased, the mean particle diameter decreased and the specific surface area increased out to 30 minutes as mechanical dispersion and/or the fragmentation of organic particles occurred. However, circulation time after 5 minutes is not significantly different in terms of mean particle diameter. To investigate refractive index, 12 optical models were created. When determined across all intact samples, uncertainty was low within individual bins, with a maximum value of 0.07 ± 0.04% v/v. For dispersed samples, uncertainty increased within the silt sized region and had a maximum value of 0.17 ± 0.07% v/v. This study demonstrates that the particle diameter of organic soil material can be measured by LD with comparable certainty as mineral soil material using the methodological approach in this study.This article is protected by copyright. All rights reserved\",\"PeriodicalId\":22142,\"journal\":{\"name\":\"Soil Science Society of America Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Science Society of America Journal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1002/saj2.20588\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Science Society of America Journal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/saj2.20588","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
摘要
认识到质地是“主要的土壤性质”,表明需要对有机土壤材料中的颗粒大小进行实际量化。使用多波粒度分析仪,纤维和土壤样品通过9.6 L min - 1的封闭水环在去离子水中循环,并研究了以下方法参数:预处理,循环时间和折射率。我们的研究结果表明,有机土壤样品的预处理取决于分解程度;纤维样品的完整psd和分散psd没有差异,而含盐样品的psd则从500 ~ 2000 μm(完整)到5 ~ 100 μm(分散)。用平均粒径和比表面积考察循环时间。我们证明,随着循环时间的增加,平均颗粒直径减小,比表面积增加到30分钟,因为有机颗粒发生了机械分散和/或破碎。然而,5分钟后的循环时间在平均颗粒直径方面没有显著差异。为了研究折射率,我们建立了12个光学模型。当对所有完整样品进行测定时,单个箱内的不确定度很低,最大值为0.07±0.04% v/v。对于分散的样品,不确定度在粉砂粒度范围内增大,最大值为0.17±0.07% v/v。该研究表明,利用本研究的方法方法,有机土壤材料的颗粒直径可以用LD测量,并且具有与矿物土壤材料相当的确定性。这篇文章受版权保护。版权所有
Evaluating Methodological Parameters to Quantify Particle Size of Organic Soil Material with Laser Diffraction
The recognition that texture is a “master soil property” points towards the need for actual quantification of particle size in organic soil material. Using a multi‐wave particle size analyzer, fibric and sapric soil samples were circulated in deionized water through a closed aqueous loop at 9.6 L min−1 and the following methodological parameters were investigated: pre‐treatment, circulation time, and refractive index. Our results show that pre‐treatment for organic soil samples is dependent upon the degree of decomposition; the intact and dispersed PSDs for fibrous samples were not different, whereas the PSDs for sapric samples showed a shift from 500 to 2000 (intact) μm to 5 to 100 (dispersed) μm. Circulation time was investigated using mean particle diameter and specific surface area. We demonstrated that as circulation time increased, the mean particle diameter decreased and the specific surface area increased out to 30 minutes as mechanical dispersion and/or the fragmentation of organic particles occurred. However, circulation time after 5 minutes is not significantly different in terms of mean particle diameter. To investigate refractive index, 12 optical models were created. When determined across all intact samples, uncertainty was low within individual bins, with a maximum value of 0.07 ± 0.04% v/v. For dispersed samples, uncertainty increased within the silt sized region and had a maximum value of 0.17 ± 0.07% v/v. This study demonstrates that the particle diameter of organic soil material can be measured by LD with comparable certainty as mineral soil material using the methodological approach in this study.This article is protected by copyright. All rights reserved
期刊介绍:
SSSA Journal publishes content on soil physics; hydrology; soil chemistry; soil biology; soil biochemistry; soil fertility; plant nutrition; pedology; soil and water conservation and management; forest, range, and wildland soils; soil and plant analysis; soil mineralogy, wetland soils. The audience is researchers, students, soil scientists, hydrologists, pedologist, geologists, agronomists, arborists, ecologists, engineers, certified practitioners, soil microbiologists, and environmentalists.
The journal publishes original research, issue papers, reviews, notes, comments and letters to the editor, and book reviews. Invitational papers may be published in the journal if accepted by the editorial board.