N极性GaN:外延、性质和器件应用

IF 7.4 1区 物理与天体物理 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Progress in Quantum Electronics Pub Date : 2023-01-01 DOI:10.1016/j.pquantelec.2022.100450
Subhajit Mohanty , Kamruzzaman Khan , Elaheh Ahmadi
{"title":"N极性GaN:外延、性质和器件应用","authors":"Subhajit Mohanty ,&nbsp;Kamruzzaman Khan ,&nbsp;Elaheh Ahmadi","doi":"10.1016/j.pquantelec.2022.100450","DOIUrl":null,"url":null,"abstract":"<div><p><span>In recent years, Gallium Nitride<span> (GaN) has been established as a material of choice for high power switching, high power RF and lighting applications. In c-direction, depending on the surface termination III-nitrides have either a group III element (Al, In, Ga) polarity or a N-polarity. Currently, commercially available GaN-based electronic and optoelectronic devices are fabricated predominantly on Ga-polar GaN</span></span><strong>.</strong><span><span> However, N-polar nitride heterostructures due its intrinsic </span>material properties<span><span>, including opposite polarization field and more chemically reactive surface, can provide benefits for these applications. In this article, some of important electronic and optical properties<span> of N-polar (In, Ga, Al)N thin films and heterostructures have been reviewed. Different techniques that have been used for the </span></span>epitaxial growth<span><span> of these materials including tri-halide vapor phase epitaxy (THVPE), </span>metalorganic chemical vapor deposition<span><span> (MOCVD), and plasma-assisted molecular beam epitaxy (PAMBE) have been discussed. Finally, some of important process technologies that have been developed for fabrication of N-polar GaN high </span>electron mobility transistors are presented.</span></span></span></span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"N-polar GaN: Epitaxy, properties, and device applications\",\"authors\":\"Subhajit Mohanty ,&nbsp;Kamruzzaman Khan ,&nbsp;Elaheh Ahmadi\",\"doi\":\"10.1016/j.pquantelec.2022.100450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In recent years, Gallium Nitride<span> (GaN) has been established as a material of choice for high power switching, high power RF and lighting applications. In c-direction, depending on the surface termination III-nitrides have either a group III element (Al, In, Ga) polarity or a N-polarity. Currently, commercially available GaN-based electronic and optoelectronic devices are fabricated predominantly on Ga-polar GaN</span></span><strong>.</strong><span><span> However, N-polar nitride heterostructures due its intrinsic </span>material properties<span><span>, including opposite polarization field and more chemically reactive surface, can provide benefits for these applications. In this article, some of important electronic and optical properties<span> of N-polar (In, Ga, Al)N thin films and heterostructures have been reviewed. Different techniques that have been used for the </span></span>epitaxial growth<span><span> of these materials including tri-halide vapor phase epitaxy (THVPE), </span>metalorganic chemical vapor deposition<span><span> (MOCVD), and plasma-assisted molecular beam epitaxy (PAMBE) have been discussed. Finally, some of important process technologies that have been developed for fabrication of N-polar GaN high </span>electron mobility transistors are presented.</span></span></span></span></p></div>\",\"PeriodicalId\":414,\"journal\":{\"name\":\"Progress in Quantum Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Quantum Electronics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079672722000751\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Quantum Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079672722000751","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 4

摘要

近年来,氮化镓(GaN)已成为大功率开关、大功率射频和照明应用的首选材料。在c方向上,取决于表面末端III-氮化物具有III族元素(Al, In, Ga)极性或n极性。目前,商业上可用的基于GaN的电子和光电子器件主要是在ga -极性GaN上制造的。然而,n极性氮化物异质结构由于其固有的材料特性,包括相反的极化场和更化学活性的表面,可以为这些应用提供好处。本文综述了N极性(In, Ga, Al)N薄膜和异质结构的一些重要的电子和光学性质。讨论了用于这些材料外延生长的不同技术,包括三卤化物气相外延(THVPE),金属有机化学气相沉积(MOCVD)和等离子体辅助分子束外延(PAMBE)。最后介绍了氮化镓高电子迁移率晶体管的一些重要工艺技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
N-polar GaN: Epitaxy, properties, and device applications

In recent years, Gallium Nitride (GaN) has been established as a material of choice for high power switching, high power RF and lighting applications. In c-direction, depending on the surface termination III-nitrides have either a group III element (Al, In, Ga) polarity or a N-polarity. Currently, commercially available GaN-based electronic and optoelectronic devices are fabricated predominantly on Ga-polar GaN. However, N-polar nitride heterostructures due its intrinsic material properties, including opposite polarization field and more chemically reactive surface, can provide benefits for these applications. In this article, some of important electronic and optical properties of N-polar (In, Ga, Al)N thin films and heterostructures have been reviewed. Different techniques that have been used for the epitaxial growth of these materials including tri-halide vapor phase epitaxy (THVPE), metalorganic chemical vapor deposition (MOCVD), and plasma-assisted molecular beam epitaxy (PAMBE) have been discussed. Finally, some of important process technologies that have been developed for fabrication of N-polar GaN high electron mobility transistors are presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Quantum Electronics
Progress in Quantum Electronics 工程技术-工程:电子与电气
CiteScore
18.50
自引率
0.00%
发文量
23
审稿时长
150 days
期刊介绍: Progress in Quantum Electronics, established in 1969, is an esteemed international review journal dedicated to sharing cutting-edge topics in quantum electronics and its applications. The journal disseminates papers covering theoretical and experimental aspects of contemporary research, including advances in physics, technology, and engineering relevant to quantum electronics. It also encourages interdisciplinary research, welcoming papers that contribute new knowledge in areas such as bio and nano-related work.
期刊最新文献
Nonlinear photocurrent in quantum materials for broadband photodetection Technologies for modulation of visible light and their applications Editorial Board Progress and perspectives on weak-value amplification Quantum interferometers: Principles and applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1