基于单位尺度和集水区尺度的城市雨水系统管理生物滞留池敏感性分析

IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Hydroinformatics Pub Date : 2023-07-13 DOI:10.2166/hydro.2023.049
Husnain Tansar, H. Duan, O. Mark
{"title":"基于单位尺度和集水区尺度的城市雨水系统管理生物滞留池敏感性分析","authors":"Husnain Tansar, H. Duan, O. Mark","doi":"10.2166/hydro.2023.049","DOIUrl":null,"url":null,"abstract":"\n \n An improved understanding of bioretention cell (BC) design configuration at both the unit scale and catchment scale is necessary for critical insight into dynamical behaviors of design parameters which resultantly guides and improves the effectiveness and efficiency of a BC. A comprehensive sensitivity analysis (SA) of BC design parameters was conducted in this study by using the Stormwater Management Model (SWMM) which is globally used for BC's modeling. The preliminary screening of various design parameters is conducted by the one-factor-at-a-time (OAT) SA method and the key influential parameters (i.e., conductivity, berm height, vegetation volume, suction head, porosity, wilting point, and soil thickness) are selected for further SA. To this end, 1,000 random uniformly distributed samples of each sensitive design parameter are simulated by a Python wrapper of SWMM (PySWMM) under different design storms at the unit scale and catchment scale, respectively. Unit-scale SA results found unique characteristics of each design parameter under different storm scenarios, and their behaviors toward different model responses dynamically change within their factor spaces. Catchment-scale SA results conclude vegetation and soil layers design parameters have significant impacts on controlling stormwater at the catchment scale, and optimal selection of design parameters of vegetation (type, density, and height) and soil (type, layer thickness, and void ratio) is necessary for significantly improving the effectiveness of the BC at the catchment scale.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unit-scale- and catchment-scale-based sensitivity analysis of bioretention cell for urban stormwater system management\",\"authors\":\"Husnain Tansar, H. Duan, O. Mark\",\"doi\":\"10.2166/hydro.2023.049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n An improved understanding of bioretention cell (BC) design configuration at both the unit scale and catchment scale is necessary for critical insight into dynamical behaviors of design parameters which resultantly guides and improves the effectiveness and efficiency of a BC. A comprehensive sensitivity analysis (SA) of BC design parameters was conducted in this study by using the Stormwater Management Model (SWMM) which is globally used for BC's modeling. The preliminary screening of various design parameters is conducted by the one-factor-at-a-time (OAT) SA method and the key influential parameters (i.e., conductivity, berm height, vegetation volume, suction head, porosity, wilting point, and soil thickness) are selected for further SA. To this end, 1,000 random uniformly distributed samples of each sensitive design parameter are simulated by a Python wrapper of SWMM (PySWMM) under different design storms at the unit scale and catchment scale, respectively. Unit-scale SA results found unique characteristics of each design parameter under different storm scenarios, and their behaviors toward different model responses dynamically change within their factor spaces. Catchment-scale SA results conclude vegetation and soil layers design parameters have significant impacts on controlling stormwater at the catchment scale, and optimal selection of design parameters of vegetation (type, density, and height) and soil (type, layer thickness, and void ratio) is necessary for significantly improving the effectiveness of the BC at the catchment scale.\",\"PeriodicalId\":54801,\"journal\":{\"name\":\"Journal of Hydroinformatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydroinformatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2166/hydro.2023.049\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2166/hydro.2023.049","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

提高对单位尺度和流域尺度上生物滞留细胞(BC)设计配置的理解对于深入了解设计参数的动态行为至关重要,从而指导和提高BC的有效性和效率。本研究采用全球通用的雨水管理模型(SWMM)对BC设计参数进行了综合敏感性分析(SA)。采用单因素一次(one-factor-at-a-time, OAT) SA法对各设计参数进行初步筛选,并选择关键影响参数(电导率、护堤高度、植被体积、吸力水头、孔隙度、萎蔫点、土壤厚度)进行进一步SA。为此,利用Python SWMM封装器(PySWMM)在不同设计风暴下,分别在单位尺度和流域尺度下,对每个敏感设计参数随机均匀分布的1000个样本进行模拟。单位尺度SA结果表明,各设计参数在不同风暴情景下具有独特的特征,其对不同模式响应的行为在其因子空间内是动态变化的。流域尺度SA结果表明,植被和土层设计参数对流域尺度雨水控制有显著影响,植被(类型、密度、高度)和土壤(类型、层厚、空隙比)设计参数的优化选择是显著提高流域尺度雨水控制效果的必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unit-scale- and catchment-scale-based sensitivity analysis of bioretention cell for urban stormwater system management
An improved understanding of bioretention cell (BC) design configuration at both the unit scale and catchment scale is necessary for critical insight into dynamical behaviors of design parameters which resultantly guides and improves the effectiveness and efficiency of a BC. A comprehensive sensitivity analysis (SA) of BC design parameters was conducted in this study by using the Stormwater Management Model (SWMM) which is globally used for BC's modeling. The preliminary screening of various design parameters is conducted by the one-factor-at-a-time (OAT) SA method and the key influential parameters (i.e., conductivity, berm height, vegetation volume, suction head, porosity, wilting point, and soil thickness) are selected for further SA. To this end, 1,000 random uniformly distributed samples of each sensitive design parameter are simulated by a Python wrapper of SWMM (PySWMM) under different design storms at the unit scale and catchment scale, respectively. Unit-scale SA results found unique characteristics of each design parameter under different storm scenarios, and their behaviors toward different model responses dynamically change within their factor spaces. Catchment-scale SA results conclude vegetation and soil layers design parameters have significant impacts on controlling stormwater at the catchment scale, and optimal selection of design parameters of vegetation (type, density, and height) and soil (type, layer thickness, and void ratio) is necessary for significantly improving the effectiveness of the BC at the catchment scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydroinformatics
Journal of Hydroinformatics 工程技术-工程:土木
CiteScore
4.80
自引率
3.70%
发文量
59
审稿时长
3 months
期刊介绍: Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.
期刊最新文献
A genetic algorithm's novel rainfall distribution method for optimized hydrological modeling at basin scales Accelerating regional-scale groundwater flow simulations with a hybrid deep neural network model incorporating mixed input types: A case study of the northeast Qatar aquifer Advancing rapid urban flood prediction: a spatiotemporal deep learning approach with uneven rainfall and attention mechanism A parallel multi-objective optimization based on adaptive surrogate model for combined operation of multiple hydraulic facilities in water diversion project Long-term inflow forecast using meteorological data based on long short-term memory neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1