{"title":"竞争对手诱导的基于碳量子点的分级囊泡自组装耗散:一种治疗高胆固醇血症的纳米平台","authors":"Saheli Sarkar, Subhro Mandal, Animesh Pramanik","doi":"10.1016/j.jciso.2023.100094","DOIUrl":null,"url":null,"abstract":"<div><h3>Hypothesis</h3><p>Supramolecular self-assembly derived from amphiphilic molecules is one of the prime interests with the motivation to develop new building blocks to create different task-specific self-assemblies. Considering the emergent applicability of these self-aggregates across the globe, it would be necessary to develop an alternate technique for the manufacture of self-aggregates employing novel building blocks.</p></div><div><h3>Experiment</h3><p>With this aim, we synthesized a palmitoyl moiety functionalized carbon quantum dot (FCQD). Interestingly, the synthesized FCQD was found to form a stable amphiphilic inclusion complex (βCD-FCQD) with the ‘host’ β-cyclodextrin (βCD). This amphiphilic βCD-FCQD complex was utilized as a building block to form a hierarchical vesicular self-aggregate (βCD-FCQD vesicle).</p></div><div><h3>Findings</h3><p>This βCD-FCQD vesicle was successfully employed to detect cholesterol. Moreover, cholesterol lowering hydrophilic drug rosuvastatin loaded βCD-FCQD vesicle was found to be potential in regulation of cholesterol. This work is anticipated to encourage the construction of drug loaded self-assembly based formulation to achieve a way out towards graded combined treatment for cholesterol related disorder like hypercholesterolemia.</p></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Competitor induced dissipation of carbon quantum dot based hierarchical vesicular self-assembly: A theranostic nanoplatform towards hypercholesterolemia\",\"authors\":\"Saheli Sarkar, Subhro Mandal, Animesh Pramanik\",\"doi\":\"10.1016/j.jciso.2023.100094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Hypothesis</h3><p>Supramolecular self-assembly derived from amphiphilic molecules is one of the prime interests with the motivation to develop new building blocks to create different task-specific self-assemblies. Considering the emergent applicability of these self-aggregates across the globe, it would be necessary to develop an alternate technique for the manufacture of self-aggregates employing novel building blocks.</p></div><div><h3>Experiment</h3><p>With this aim, we synthesized a palmitoyl moiety functionalized carbon quantum dot (FCQD). Interestingly, the synthesized FCQD was found to form a stable amphiphilic inclusion complex (βCD-FCQD) with the ‘host’ β-cyclodextrin (βCD). This amphiphilic βCD-FCQD complex was utilized as a building block to form a hierarchical vesicular self-aggregate (βCD-FCQD vesicle).</p></div><div><h3>Findings</h3><p>This βCD-FCQD vesicle was successfully employed to detect cholesterol. Moreover, cholesterol lowering hydrophilic drug rosuvastatin loaded βCD-FCQD vesicle was found to be potential in regulation of cholesterol. This work is anticipated to encourage the construction of drug loaded self-assembly based formulation to achieve a way out towards graded combined treatment for cholesterol related disorder like hypercholesterolemia.</p></div>\",\"PeriodicalId\":73541,\"journal\":{\"name\":\"JCIS open\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCIS open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666934X23000211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCIS open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666934X23000211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
Competitor induced dissipation of carbon quantum dot based hierarchical vesicular self-assembly: A theranostic nanoplatform towards hypercholesterolemia
Hypothesis
Supramolecular self-assembly derived from amphiphilic molecules is one of the prime interests with the motivation to develop new building blocks to create different task-specific self-assemblies. Considering the emergent applicability of these self-aggregates across the globe, it would be necessary to develop an alternate technique for the manufacture of self-aggregates employing novel building blocks.
Experiment
With this aim, we synthesized a palmitoyl moiety functionalized carbon quantum dot (FCQD). Interestingly, the synthesized FCQD was found to form a stable amphiphilic inclusion complex (βCD-FCQD) with the ‘host’ β-cyclodextrin (βCD). This amphiphilic βCD-FCQD complex was utilized as a building block to form a hierarchical vesicular self-aggregate (βCD-FCQD vesicle).
Findings
This βCD-FCQD vesicle was successfully employed to detect cholesterol. Moreover, cholesterol lowering hydrophilic drug rosuvastatin loaded βCD-FCQD vesicle was found to be potential in regulation of cholesterol. This work is anticipated to encourage the construction of drug loaded self-assembly based formulation to achieve a way out towards graded combined treatment for cholesterol related disorder like hypercholesterolemia.