Jiaxu Yao, Kecheng Zhang, Wenbin He, J. Lei, Jin Xu
{"title":"航空发动机模拟条件下旋转双通道光滑带肋通道的传热分布研究","authors":"Jiaxu Yao, Kecheng Zhang, Wenbin He, J. Lei, Jin Xu","doi":"10.1115/1.4063248","DOIUrl":null,"url":null,"abstract":"\n Rotating significantly alters the internal cooling of turbine rotor blades by induced Coriolis force and buoyancy force, whose effects are characterized by the nondimensional rotation number (Ro) and buoyancy parameter (Bo). The present work was carried out in a new experimental rig of rotor blade internal cooling to obtain detailed heat transfer distributions when the three nondimensional criterion numbers (i.e., Re, Ro, and Bo) are similar to aero-engine operating conditions. Smooth and ribbed 2-pass internal cooling channels with a 180° tip turn are investigated. The hydraulic diameter is 25.4 mm (1 inch), and the aspect ratio is 2:1. The Reynolds number is fixed at 25000, with the maximum Ro and Bo of 0.316 and 0.272, respectively. The steady-state thermochromic liquid crystal (TLC) technique is used to measure detailed heat transfer distributions in the channel. Steady-state RANS simulations are also employed to resolve the flow characteristics. The effects of rotation on the flow and heat transfer characteristics are studied in this paper. The results show effects of rotation on the heat transfer distribution present apparent spatial discrepancy, especially around the bend region. The significant difference in the influence of rotation is witnessed in the smooth and the ribbed channel.","PeriodicalId":49966,"journal":{"name":"Journal of Turbomachinery-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on Heat Transfer Distribution of Rotating 2-Pass Smooth and Ribbed Channels under Aero-Engine Simulated Conditions\",\"authors\":\"Jiaxu Yao, Kecheng Zhang, Wenbin He, J. Lei, Jin Xu\",\"doi\":\"10.1115/1.4063248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Rotating significantly alters the internal cooling of turbine rotor blades by induced Coriolis force and buoyancy force, whose effects are characterized by the nondimensional rotation number (Ro) and buoyancy parameter (Bo). The present work was carried out in a new experimental rig of rotor blade internal cooling to obtain detailed heat transfer distributions when the three nondimensional criterion numbers (i.e., Re, Ro, and Bo) are similar to aero-engine operating conditions. Smooth and ribbed 2-pass internal cooling channels with a 180° tip turn are investigated. The hydraulic diameter is 25.4 mm (1 inch), and the aspect ratio is 2:1. The Reynolds number is fixed at 25000, with the maximum Ro and Bo of 0.316 and 0.272, respectively. The steady-state thermochromic liquid crystal (TLC) technique is used to measure detailed heat transfer distributions in the channel. Steady-state RANS simulations are also employed to resolve the flow characteristics. The effects of rotation on the flow and heat transfer characteristics are studied in this paper. The results show effects of rotation on the heat transfer distribution present apparent spatial discrepancy, especially around the bend region. The significant difference in the influence of rotation is witnessed in the smooth and the ribbed channel.\",\"PeriodicalId\":49966,\"journal\":{\"name\":\"Journal of Turbomachinery-Transactions of the Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Turbomachinery-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063248\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbomachinery-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063248","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Investigation on Heat Transfer Distribution of Rotating 2-Pass Smooth and Ribbed Channels under Aero-Engine Simulated Conditions
Rotating significantly alters the internal cooling of turbine rotor blades by induced Coriolis force and buoyancy force, whose effects are characterized by the nondimensional rotation number (Ro) and buoyancy parameter (Bo). The present work was carried out in a new experimental rig of rotor blade internal cooling to obtain detailed heat transfer distributions when the three nondimensional criterion numbers (i.e., Re, Ro, and Bo) are similar to aero-engine operating conditions. Smooth and ribbed 2-pass internal cooling channels with a 180° tip turn are investigated. The hydraulic diameter is 25.4 mm (1 inch), and the aspect ratio is 2:1. The Reynolds number is fixed at 25000, with the maximum Ro and Bo of 0.316 and 0.272, respectively. The steady-state thermochromic liquid crystal (TLC) technique is used to measure detailed heat transfer distributions in the channel. Steady-state RANS simulations are also employed to resolve the flow characteristics. The effects of rotation on the flow and heat transfer characteristics are studied in this paper. The results show effects of rotation on the heat transfer distribution present apparent spatial discrepancy, especially around the bend region. The significant difference in the influence of rotation is witnessed in the smooth and the ribbed channel.
期刊介绍:
The Journal of Turbomachinery publishes archival-quality, peer-reviewed technical papers that advance the state-of-the-art of turbomachinery technology related to gas turbine engines. The broad scope of the subject matter includes the fluid dynamics, heat transfer, and aeromechanics technology associated with the design, analysis, modeling, testing, and performance of turbomachinery. Emphasis is placed on gas-path technologies associated with axial compressors, centrifugal compressors, and turbines.
Topics: Aerodynamic design, analysis, and test of compressor and turbine blading; Compressor stall, surge, and operability issues; Heat transfer phenomena and film cooling design, analysis, and testing in turbines; Aeromechanical instabilities; Computational fluid dynamics (CFD) applied to turbomachinery, boundary layer development, measurement techniques, and cavity and leaking flows.