飞机制动器剩余使用寿命预测

IF 1.4 Q2 ENGINEERING, MULTIDISCIPLINARY International Journal of Prognostics and Health Management Pub Date : 2022-01-25 DOI:10.36001/ijphm.2022.v13i1.3072
T. Loutas, Athanasios Oikonomou, N. Eleftheroglou, F. Freeman, D. Zarouchas
{"title":"飞机制动器剩余使用寿命预测","authors":"T. Loutas, Athanasios Oikonomou, N. Eleftheroglou, F. Freeman, D. Zarouchas","doi":"10.36001/ijphm.2022.v13i1.3072","DOIUrl":null,"url":null,"abstract":"We investigate the performance of three different data-driven prognostic methodologies towards the Remaining Useful Life estimation of commercial aircraft brakes being continuously monitored for wear. The first approach utilizes a probabilistic multi-state deterioration mathematical model i.e. a Hidden Semi Markov model whilst the second utilizes a nonlinear regression approach through classical Artificial Neural Networks in a Bootstrap fashion in order to obtain prediction intervals to accompany the mean remaining life estimates. The third approach attempts to leverage the highly linear degradation data over time and uses a simple linear regression in a Bayesian framework. All methodologies, when properly trained with historical degradation data, achieve excellent performance in terms of early and accurate prediction of the remaining useful flights that the monitored set of brakes can safely serve. The paper presents a real-world application where it is demonstrated that even in non-complex linear degradation data the inherent data stochasticity prohibits the use of a simple mathematical approaches and asks for methodologies with uncertainty quantification.","PeriodicalId":42100,"journal":{"name":"International Journal of Prognostics and Health Management","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Remaining Useful Life Prognosis of Aircraft Brakes\",\"authors\":\"T. Loutas, Athanasios Oikonomou, N. Eleftheroglou, F. Freeman, D. Zarouchas\",\"doi\":\"10.36001/ijphm.2022.v13i1.3072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the performance of three different data-driven prognostic methodologies towards the Remaining Useful Life estimation of commercial aircraft brakes being continuously monitored for wear. The first approach utilizes a probabilistic multi-state deterioration mathematical model i.e. a Hidden Semi Markov model whilst the second utilizes a nonlinear regression approach through classical Artificial Neural Networks in a Bootstrap fashion in order to obtain prediction intervals to accompany the mean remaining life estimates. The third approach attempts to leverage the highly linear degradation data over time and uses a simple linear regression in a Bayesian framework. All methodologies, when properly trained with historical degradation data, achieve excellent performance in terms of early and accurate prediction of the remaining useful flights that the monitored set of brakes can safely serve. The paper presents a real-world application where it is demonstrated that even in non-complex linear degradation data the inherent data stochasticity prohibits the use of a simple mathematical approaches and asks for methodologies with uncertainty quantification.\",\"PeriodicalId\":42100,\"journal\":{\"name\":\"International Journal of Prognostics and Health Management\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Prognostics and Health Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36001/ijphm.2022.v13i1.3072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Prognostics and Health Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/ijphm.2022.v13i1.3072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7

摘要

我们研究了三种不同的数据驱动预测方法在持续监测磨损情况的商用飞机制动器剩余使用寿命估计方面的性能。第一种方法利用概率多状态恶化数学模型,即隐半马尔可夫模型,而第二种方法通过Bootstrap方式的经典人工神经网络利用非线性回归方法,以获得伴随平均剩余寿命估计的预测区间。第三种方法试图利用随时间变化的高度线性退化数据,并在贝叶斯框架中使用简单的线性回归。当使用历史退化数据进行适当训练时,所有方法都能在早期准确预测被监测的刹车组可以安全服务的剩余有用飞行方面取得优异的性能。本文介绍了一个真实世界的应用,证明了即使在非复杂的线性退化数据中,固有的数据随机性也禁止使用简单的数学方法,并要求使用具有不确定性量化的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Remaining Useful Life Prognosis of Aircraft Brakes
We investigate the performance of three different data-driven prognostic methodologies towards the Remaining Useful Life estimation of commercial aircraft brakes being continuously monitored for wear. The first approach utilizes a probabilistic multi-state deterioration mathematical model i.e. a Hidden Semi Markov model whilst the second utilizes a nonlinear regression approach through classical Artificial Neural Networks in a Bootstrap fashion in order to obtain prediction intervals to accompany the mean remaining life estimates. The third approach attempts to leverage the highly linear degradation data over time and uses a simple linear regression in a Bayesian framework. All methodologies, when properly trained with historical degradation data, achieve excellent performance in terms of early and accurate prediction of the remaining useful flights that the monitored set of brakes can safely serve. The paper presents a real-world application where it is demonstrated that even in non-complex linear degradation data the inherent data stochasticity prohibits the use of a simple mathematical approaches and asks for methodologies with uncertainty quantification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.50%
发文量
18
审稿时长
9 weeks
期刊最新文献
Accelerated Life Testing Dataset for Lithium-Ion Batteries with Constant and Variable Loading Conditions Auxiliary Particle Filter for Prognostics and Health Management Fault- Tolerant DC-DC Converter with Zero Interruption Time Using Capacitor Health Prognosis RUL Prognostics The Study of Trends in AI Applications for Vehicle Maintenance Through Keyword Co-occurrence Network Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1