T. Loutas, Athanasios Oikonomou, N. Eleftheroglou, F. Freeman, D. Zarouchas
{"title":"飞机制动器剩余使用寿命预测","authors":"T. Loutas, Athanasios Oikonomou, N. Eleftheroglou, F. Freeman, D. Zarouchas","doi":"10.36001/ijphm.2022.v13i1.3072","DOIUrl":null,"url":null,"abstract":"We investigate the performance of three different data-driven prognostic methodologies towards the Remaining Useful Life estimation of commercial aircraft brakes being continuously monitored for wear. The first approach utilizes a probabilistic multi-state deterioration mathematical model i.e. a Hidden Semi Markov model whilst the second utilizes a nonlinear regression approach through classical Artificial Neural Networks in a Bootstrap fashion in order to obtain prediction intervals to accompany the mean remaining life estimates. The third approach attempts to leverage the highly linear degradation data over time and uses a simple linear regression in a Bayesian framework. All methodologies, when properly trained with historical degradation data, achieve excellent performance in terms of early and accurate prediction of the remaining useful flights that the monitored set of brakes can safely serve. The paper presents a real-world application where it is demonstrated that even in non-complex linear degradation data the inherent data stochasticity prohibits the use of a simple mathematical approaches and asks for methodologies with uncertainty quantification.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Remaining Useful Life Prognosis of Aircraft Brakes\",\"authors\":\"T. Loutas, Athanasios Oikonomou, N. Eleftheroglou, F. Freeman, D. Zarouchas\",\"doi\":\"10.36001/ijphm.2022.v13i1.3072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the performance of three different data-driven prognostic methodologies towards the Remaining Useful Life estimation of commercial aircraft brakes being continuously monitored for wear. The first approach utilizes a probabilistic multi-state deterioration mathematical model i.e. a Hidden Semi Markov model whilst the second utilizes a nonlinear regression approach through classical Artificial Neural Networks in a Bootstrap fashion in order to obtain prediction intervals to accompany the mean remaining life estimates. The third approach attempts to leverage the highly linear degradation data over time and uses a simple linear regression in a Bayesian framework. All methodologies, when properly trained with historical degradation data, achieve excellent performance in terms of early and accurate prediction of the remaining useful flights that the monitored set of brakes can safely serve. The paper presents a real-world application where it is demonstrated that even in non-complex linear degradation data the inherent data stochasticity prohibits the use of a simple mathematical approaches and asks for methodologies with uncertainty quantification.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36001/ijphm.2022.v13i1.3072\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/ijphm.2022.v13i1.3072","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Remaining Useful Life Prognosis of Aircraft Brakes
We investigate the performance of three different data-driven prognostic methodologies towards the Remaining Useful Life estimation of commercial aircraft brakes being continuously monitored for wear. The first approach utilizes a probabilistic multi-state deterioration mathematical model i.e. a Hidden Semi Markov model whilst the second utilizes a nonlinear regression approach through classical Artificial Neural Networks in a Bootstrap fashion in order to obtain prediction intervals to accompany the mean remaining life estimates. The third approach attempts to leverage the highly linear degradation data over time and uses a simple linear regression in a Bayesian framework. All methodologies, when properly trained with historical degradation data, achieve excellent performance in terms of early and accurate prediction of the remaining useful flights that the monitored set of brakes can safely serve. The paper presents a real-world application where it is demonstrated that even in non-complex linear degradation data the inherent data stochasticity prohibits the use of a simple mathematical approaches and asks for methodologies with uncertainty quantification.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.