传统融合算法估算中国大陆降水的精度

IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Hydroinformatics Pub Date : 2023-08-12 DOI:10.2166/hydro.2023.111
Qin Jiang, Zedong Fan, Yun Xu, Weiyue Li, Junhao Zhang
{"title":"传统融合算法估算中国大陆降水的精度","authors":"Qin Jiang, Zedong Fan, Yun Xu, Weiyue Li, Junhao Zhang","doi":"10.2166/hydro.2023.111","DOIUrl":null,"url":null,"abstract":"\n \n Multi-source data-fusion approaches have been developed for estimating regional precipitation. However, studies considering the specific upper limits of the improved gridded rainfall data for different fusion approaches are limited. Here, the potential ranges of accuracy improvement for satellite and reanalysis rainfall products were addressed using various machine learning fusion approaches, including multivariate linear regression (MLR), feedforward neural network (FNN), random forest (RF), and long short-term memory (LSTM), over the Chinese mainland. All four fusion methods reduce errors in the original precipitation products. The upper limits of accuracy improvement in terms of correlation coefficient (CC) and root mean square error (RMSE) were 30.65 and 15.27%, respectively. M-RF showed the best average CC (0.828) and RMSE (4.62 mm/day) in the four seasons. LSTM performed the best under light rainfall events, whereas MLR and RF exhibited better performance under moderate and heavy rainfall events, respectively. Overall, these results serve as a basis for the fusion approach and technique selection, based on the comprehensive validation in different climate zones, altitudes, and seasons over the Chinese mainland.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accuracy of conventional fusion algorithms for precipitation estimates across the Chinese mainland\",\"authors\":\"Qin Jiang, Zedong Fan, Yun Xu, Weiyue Li, Junhao Zhang\",\"doi\":\"10.2166/hydro.2023.111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n Multi-source data-fusion approaches have been developed for estimating regional precipitation. However, studies considering the specific upper limits of the improved gridded rainfall data for different fusion approaches are limited. Here, the potential ranges of accuracy improvement for satellite and reanalysis rainfall products were addressed using various machine learning fusion approaches, including multivariate linear regression (MLR), feedforward neural network (FNN), random forest (RF), and long short-term memory (LSTM), over the Chinese mainland. All four fusion methods reduce errors in the original precipitation products. The upper limits of accuracy improvement in terms of correlation coefficient (CC) and root mean square error (RMSE) were 30.65 and 15.27%, respectively. M-RF showed the best average CC (0.828) and RMSE (4.62 mm/day) in the four seasons. LSTM performed the best under light rainfall events, whereas MLR and RF exhibited better performance under moderate and heavy rainfall events, respectively. Overall, these results serve as a basis for the fusion approach and technique selection, based on the comprehensive validation in different climate zones, altitudes, and seasons over the Chinese mainland.\",\"PeriodicalId\":54801,\"journal\":{\"name\":\"Journal of Hydroinformatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydroinformatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2166/hydro.2023.111\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2166/hydro.2023.111","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

多源数据融合方法已被用于估算区域降水。然而,考虑到不同融合方法的改进网格化降雨数据的具体上限的研究是有限的。本文利用多元线性回归(MLR)、前馈神经网络(FNN)、随机森林(RF)和长短期记忆(LSTM)等多种机器学习融合方法,探讨了中国大陆地区卫星和再分析降雨产品精度提高的潜在范围。所有四种融合方法都减少了原始沉淀产物的误差。相关系数(CC)和均方根误差(RMSE)的准确度提高上限分别为30.65%和15.27%。M-RF四季平均CC(0.828)和RMSE (4.62 mm/d)最好。LSTM在小雨条件下表现最好,MLR和RF分别在中雨和暴雨条件下表现较好。通过对中国大陆不同气候带、不同海拔、不同季节的综合验证,这些结果为融合方法和技术选择提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accuracy of conventional fusion algorithms for precipitation estimates across the Chinese mainland
Multi-source data-fusion approaches have been developed for estimating regional precipitation. However, studies considering the specific upper limits of the improved gridded rainfall data for different fusion approaches are limited. Here, the potential ranges of accuracy improvement for satellite and reanalysis rainfall products were addressed using various machine learning fusion approaches, including multivariate linear regression (MLR), feedforward neural network (FNN), random forest (RF), and long short-term memory (LSTM), over the Chinese mainland. All four fusion methods reduce errors in the original precipitation products. The upper limits of accuracy improvement in terms of correlation coefficient (CC) and root mean square error (RMSE) were 30.65 and 15.27%, respectively. M-RF showed the best average CC (0.828) and RMSE (4.62 mm/day) in the four seasons. LSTM performed the best under light rainfall events, whereas MLR and RF exhibited better performance under moderate and heavy rainfall events, respectively. Overall, these results serve as a basis for the fusion approach and technique selection, based on the comprehensive validation in different climate zones, altitudes, and seasons over the Chinese mainland.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydroinformatics
Journal of Hydroinformatics 工程技术-工程:土木
CiteScore
4.80
自引率
3.70%
发文量
59
审稿时长
3 months
期刊介绍: Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.
期刊最新文献
A genetic algorithm's novel rainfall distribution method for optimized hydrological modeling at basin scales Accelerating regional-scale groundwater flow simulations with a hybrid deep neural network model incorporating mixed input types: A case study of the northeast Qatar aquifer Advancing rapid urban flood prediction: a spatiotemporal deep learning approach with uneven rainfall and attention mechanism A parallel multi-objective optimization based on adaptive surrogate model for combined operation of multiple hydraulic facilities in water diversion project Long-term inflow forecast using meteorological data based on long short-term memory neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1