采用数字控制人工介质差分传输线的K波段CMOS驻波振荡器

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Microwave and Wireless Components Letters Pub Date : 2022-10-01 DOI:10.1109/LMWC.2022.3175727
Yun Li, Xuepu Wu, J. Gu, Q. Gu, Zhiwei Xu, Xiaopeng Yu
{"title":"采用数字控制人工介质差分传输线的K波段CMOS驻波振荡器","authors":"Yun Li, Xuepu Wu, J. Gu, Q. Gu, Zhiwei Xu, Xiaopeng Yu","doi":"10.1109/LMWC.2022.3175727","DOIUrl":null,"url":null,"abstract":"This letter presents a K-band standing wave oscillator (SWO) based on digital-controlled artificial dielectric differential transmission lines (DiCAD-DTLs). By combining the unique property of constant phase and digitally controlled wide tuning range, the proposed design achieves a better balance between phase noise and tuning range. A compact layout and high operating frequency are, hence, possible, since DiCAD-DTLs in this design behave like a resonator instead of a capacitor bank. This chip was fabricated in a standard 0.13-<inline-formula> <tex-math notation=\"LaTeX\">$\\mu \\text{m}$ </tex-math></inline-formula> CMOS process with an area of 0.035 mm2. It achieves a tuning range from 19.2 to 21.6 GHz. The measured phase noise is around −104.7 dBc/Hz at a 1-MHz offset. This oscillator including buffer consumes 5 mA from a 1.5-V supply, demonstrating a figure of merit (FOM) and FOM<inline-formula> <tex-math notation=\"LaTeX\">$\\mathrm {_{T}}$ </tex-math></inline-formula> of −181.8 and −183.3 dBc/Hz, respectively.","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":"32 1","pages":"1195-1198"},"PeriodicalIF":2.9000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A K-Band CMOS Standing Wave Oscillator Using Digital-Controlled Artificial Dielectric Differential Transmission Lines\",\"authors\":\"Yun Li, Xuepu Wu, J. Gu, Q. Gu, Zhiwei Xu, Xiaopeng Yu\",\"doi\":\"10.1109/LMWC.2022.3175727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter presents a K-band standing wave oscillator (SWO) based on digital-controlled artificial dielectric differential transmission lines (DiCAD-DTLs). By combining the unique property of constant phase and digitally controlled wide tuning range, the proposed design achieves a better balance between phase noise and tuning range. A compact layout and high operating frequency are, hence, possible, since DiCAD-DTLs in this design behave like a resonator instead of a capacitor bank. This chip was fabricated in a standard 0.13-<inline-formula> <tex-math notation=\\\"LaTeX\\\">$\\\\mu \\\\text{m}$ </tex-math></inline-formula> CMOS process with an area of 0.035 mm2. It achieves a tuning range from 19.2 to 21.6 GHz. The measured phase noise is around −104.7 dBc/Hz at a 1-MHz offset. This oscillator including buffer consumes 5 mA from a 1.5-V supply, demonstrating a figure of merit (FOM) and FOM<inline-formula> <tex-math notation=\\\"LaTeX\\\">$\\\\mathrm {_{T}}$ </tex-math></inline-formula> of −181.8 and −183.3 dBc/Hz, respectively.\",\"PeriodicalId\":13130,\"journal\":{\"name\":\"IEEE Microwave and Wireless Components Letters\",\"volume\":\"32 1\",\"pages\":\"1195-1198\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Microwave and Wireless Components Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/LMWC.2022.3175727\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Microwave and Wireless Components Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LMWC.2022.3175727","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种基于数字控制人工介质差分传输线的k波段驻波振荡器。该设计结合了恒相位和数字控制宽调谐范围的特性,在相位噪声和调谐范围之间实现了较好的平衡。因此,紧凑的布局和高工作频率是可能的,因为dicad - dtl在这种设计中表现得像谐振器而不是电容器组。该芯片采用标准的0.13- $\mu \text{m}$ CMOS工艺制造,面积为0.035 mm2。它实现了从19.2到21.6 GHz的调谐范围。在1 mhz偏移时,测量到的相位噪声约为−104.7 dBc/Hz。该振荡器包括缓冲器,从1.5 v电源消耗5 mA,分别显示出- 181.8和- 183.3 dBc/Hz的优值(FOM)和FOM $\ maththrm {_{T}}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A K-Band CMOS Standing Wave Oscillator Using Digital-Controlled Artificial Dielectric Differential Transmission Lines
This letter presents a K-band standing wave oscillator (SWO) based on digital-controlled artificial dielectric differential transmission lines (DiCAD-DTLs). By combining the unique property of constant phase and digitally controlled wide tuning range, the proposed design achieves a better balance between phase noise and tuning range. A compact layout and high operating frequency are, hence, possible, since DiCAD-DTLs in this design behave like a resonator instead of a capacitor bank. This chip was fabricated in a standard 0.13- $\mu \text{m}$ CMOS process with an area of 0.035 mm2. It achieves a tuning range from 19.2 to 21.6 GHz. The measured phase noise is around −104.7 dBc/Hz at a 1-MHz offset. This oscillator including buffer consumes 5 mA from a 1.5-V supply, demonstrating a figure of merit (FOM) and FOM $\mathrm {_{T}}$ of −181.8 and −183.3 dBc/Hz, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Microwave and Wireless Components Letters
IEEE Microwave and Wireless Components Letters 工程技术-工程:电子与电气
自引率
13.30%
发文量
376
审稿时长
3.0 months
期刊介绍: The IEEE Microwave and Wireless Components Letters (MWCL) publishes four-page papers (3 pages of text + up to 1 page of references) that focus on microwave theory, techniques and applications as they relate to components, devices, circuits, biological effects, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, medical and industrial activities. Microwave theory and techniques relates to electromagnetic waves in the frequency range of a few MHz and a THz; other spectral regions and wave types are included within the scope of the MWCL whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.
期刊最新文献
A Broadband Ka-Band Waveguide Magic-T With Compact Inner Ridge Matching A Broadband 10–43-GHz High-Gain LNA MMIC Using Coupled-Line Feedback in 0.15-μm GaAs pHEMT Technology A Low Power Sub-GHz Wideband LNA Employing Current-Reuse and Device-Reuse Positive Shunt-Feedback Technique Accurate Magnetic Coupling Coefficient Modeling of 3-D Transformer Based on TSV Effect of Different Shapes on the Measurement of Dielectric Constants of Low-Loss Materials With Rectangular Waveguides at X-Band
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1