Furin与新冠肺炎:代表性活性位点抑制剂的结构、功能和化学信息学分析

B. Villoutreix, I. Badiola, A. Khatib
{"title":"Furin与新冠肺炎:代表性活性位点抑制剂的结构、功能和化学信息学分析","authors":"B. Villoutreix, I. Badiola, A. Khatib","doi":"10.3389/fddsv.2022.899239","DOIUrl":null,"url":null,"abstract":"Furin is involved in the endoproteolytic processing of various protein precursors implicated in many diseases such as diabetes, obesity, atherosclerosis, cancer, Alzheimer’s disease and viral infection including COVID-19. Recently, cell entry of SARS-CoV-2 was found to require sequential cleavage of the viral spike glycoprotein (S protein) at the S1/S2 and the S2ʹ cleavage sites. The S1/S2 site (PRRAR) can be cleaved by the proprotein convertase furin that facilitates membrane fusion and viral spread. Here we summarized the recent findings on furin and S protein structures, the role of S protein cleavage by furin during SARS-CoV-2 infection. We analyzed 12 diverse representative inhibitors of furin using a chemoinformatic approach starting from a list of 628 compounds downloaded from the ChEMBL database. Among those, only 76 survived a soft rule of five filtering step. Structural alerts are present on most of these molecules while some compounds are also predicted to act on toxicity targets. No clinical trials are presently listed at the ClinicalTrials.gov website regarding small molecule inhibitors of furin.","PeriodicalId":73080,"journal":{"name":"Frontiers in drug discovery","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Furin and COVID-19: Structure, Function and Chemoinformatic Analysis of Representative Active Site Inhibitors\",\"authors\":\"B. Villoutreix, I. Badiola, A. Khatib\",\"doi\":\"10.3389/fddsv.2022.899239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Furin is involved in the endoproteolytic processing of various protein precursors implicated in many diseases such as diabetes, obesity, atherosclerosis, cancer, Alzheimer’s disease and viral infection including COVID-19. Recently, cell entry of SARS-CoV-2 was found to require sequential cleavage of the viral spike glycoprotein (S protein) at the S1/S2 and the S2ʹ cleavage sites. The S1/S2 site (PRRAR) can be cleaved by the proprotein convertase furin that facilitates membrane fusion and viral spread. Here we summarized the recent findings on furin and S protein structures, the role of S protein cleavage by furin during SARS-CoV-2 infection. We analyzed 12 diverse representative inhibitors of furin using a chemoinformatic approach starting from a list of 628 compounds downloaded from the ChEMBL database. Among those, only 76 survived a soft rule of five filtering step. Structural alerts are present on most of these molecules while some compounds are also predicted to act on toxicity targets. No clinical trials are presently listed at the ClinicalTrials.gov website regarding small molecule inhibitors of furin.\",\"PeriodicalId\":73080,\"journal\":{\"name\":\"Frontiers in drug discovery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in drug discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fddsv.2022.899239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in drug discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fddsv.2022.899239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

Furin参与多种蛋白质前体的内蛋白酶解过程,这些蛋白质前体与许多疾病有关,如糖尿病、肥胖症、动脉粥样硬化、癌症、阿尔茨海默病和包括新冠肺炎在内的病毒感染。最近,发现严重急性呼吸系统综合征冠状病毒2型的细胞进入需要在S1/S2和S2切割位点顺序切割病毒刺突糖蛋白(S蛋白)。S1/S2位点(PRRAR)可以被促进膜融合和病毒传播的前蛋白转化酶弗林切割。在这里,我们总结了关于弗林蛋白酶和S蛋白结构的最新发现,以及弗林蛋白酶在严重急性呼吸系统综合征冠状病毒2型感染中切割S蛋白的作用。我们使用化学信息学方法分析了12种不同的代表性弗林抑制剂,从ChEMBL数据库下载的628种化合物列表开始。在这些人中,只有76人通过了五步过滤的软规则。这些分子中的大多数都存在结构警报,而一些化合物也被预测会作用于毒性目标。目前,ClinicalTrials.gov网站上没有列出关于弗林小分子抑制剂的临床试验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Furin and COVID-19: Structure, Function and Chemoinformatic Analysis of Representative Active Site Inhibitors
Furin is involved in the endoproteolytic processing of various protein precursors implicated in many diseases such as diabetes, obesity, atherosclerosis, cancer, Alzheimer’s disease and viral infection including COVID-19. Recently, cell entry of SARS-CoV-2 was found to require sequential cleavage of the viral spike glycoprotein (S protein) at the S1/S2 and the S2ʹ cleavage sites. The S1/S2 site (PRRAR) can be cleaved by the proprotein convertase furin that facilitates membrane fusion and viral spread. Here we summarized the recent findings on furin and S protein structures, the role of S protein cleavage by furin during SARS-CoV-2 infection. We analyzed 12 diverse representative inhibitors of furin using a chemoinformatic approach starting from a list of 628 compounds downloaded from the ChEMBL database. Among those, only 76 survived a soft rule of five filtering step. Structural alerts are present on most of these molecules while some compounds are also predicted to act on toxicity targets. No clinical trials are presently listed at the ClinicalTrials.gov website regarding small molecule inhibitors of furin.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mimicking the immunosuppressive impact of fibroblasts in a 3D multicellular spheroid model Alternative therapeutics to control antimicrobial resistance: a general perspective Editorial: The boulder peptide symposium 2021 scientific update Applying artificial intelligence to accelerate and de-risk antibody discovery Editorial: Women in anti-inflammatory and immunomodulating agents: 2022
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1