基于秩集抽样的新型威布尔-帕累托分布参数估计

IF 1.6 Q1 STATISTICS & PROBABILITY Statistica Pub Date : 2020-06-25 DOI:10.6092/ISSN.1973-2201/9368
M. Samuh, A. Al-Omari, N. Koyuncu
{"title":"基于秩集抽样的新型威布尔-帕累托分布参数估计","authors":"M. Samuh, A. Al-Omari, N. Koyuncu","doi":"10.6092/ISSN.1973-2201/9368","DOIUrl":null,"url":null,"abstract":"The method of maximum likelihood estimation based on ranked set sampling (RSS) and some of its modifications is used to estimate the unknown parameters of the new Weibull-Pareto distribution. The estimators are compared with the conventional estimators based on simple random sampling (SRS). The biases, mean squared errors, and confidence intervals are used to the comparison. The effect of the set size and number of cycles of the RSS schemes are addressed. Monte Carlo simulation is carried out by using R. The results showed that the RSS estimators are more efficient than their competitors using SRS.","PeriodicalId":45117,"journal":{"name":"Statistica","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2020-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Estimation of the Parameters of the New Weibull-Pareto Distribution Using Ranked Set Sampling\",\"authors\":\"M. Samuh, A. Al-Omari, N. Koyuncu\",\"doi\":\"10.6092/ISSN.1973-2201/9368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The method of maximum likelihood estimation based on ranked set sampling (RSS) and some of its modifications is used to estimate the unknown parameters of the new Weibull-Pareto distribution. The estimators are compared with the conventional estimators based on simple random sampling (SRS). The biases, mean squared errors, and confidence intervals are used to the comparison. The effect of the set size and number of cycles of the RSS schemes are addressed. Monte Carlo simulation is carried out by using R. The results showed that the RSS estimators are more efficient than their competitors using SRS.\",\"PeriodicalId\":45117,\"journal\":{\"name\":\"Statistica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2020-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6092/ISSN.1973-2201/9368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.1973-2201/9368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 8

摘要

采用基于排序集抽样的极大似然估计方法及其一些改进,对新Weibull-Pareto分布的未知参数进行了估计。将该估计量与基于简单随机抽样(SRS)的传统估计量进行比较。偏差、均方误差和置信区间用于比较。讨论了RSS方案的设置大小和周期数的影响。利用r进行了蒙特卡罗仿真,结果表明RSS估计器比使用SRS的竞争对手更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of the Parameters of the New Weibull-Pareto Distribution Using Ranked Set Sampling
The method of maximum likelihood estimation based on ranked set sampling (RSS) and some of its modifications is used to estimate the unknown parameters of the new Weibull-Pareto distribution. The estimators are compared with the conventional estimators based on simple random sampling (SRS). The biases, mean squared errors, and confidence intervals are used to the comparison. The effect of the set size and number of cycles of the RSS schemes are addressed. Monte Carlo simulation is carried out by using R. The results showed that the RSS estimators are more efficient than their competitors using SRS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistica
Statistica STATISTICS & PROBABILITY-
CiteScore
1.70
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
A New Discrete Distribution: Properties, Characterizations, Modeling Real Count Data, Bayesian and Non-Bayesian Estimations Polynomial Columns-Parameter Symmetry Model and its Decomposition for Square Contingency Tables A Class of Univariate Non-Mesokurtic Distributions Using a Continuous Uniform Symmetrizer and Chi Generator The Marshall-Olkin Gompertz Distribution: Properties and Applications Estimation of Cumulative Incidence Function in the Presence of Middle Censoring Using Improper Gompertz Distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1