M. Fekri, Rahim Bazvand, Mousa Solymani, M. R. Mehr
{"title":"奥硝唑类药物在掺杂Si、B和Al的C60富勒烯上的吸附行为、电子和热力学性质:量子力学模拟","authors":"M. Fekri, Rahim Bazvand, Mousa Solymani, M. R. Mehr","doi":"10.22036/PCR.2020.244279.1814","DOIUrl":null,"url":null,"abstract":"In this research, we investigated the interaction behavior of ornidazole drug on the surface of pristine as well as doped C60 fullerene with Si, B and Al using density functional theory (DFT) at B3LYP/6-31G* level in gas phase and water. To study ornidazole adsorption properties on the C60, we replaced a carbon atom with B, Si and Al atoms. After optimization of the structures, various parameters such as HOMO and LUMO energies, gap energy, adsorption energy, chemical hardness, chemical potential, dipole moment, electrophilicity index and thermodynamics data were calculated. In contrast to the pristine C60, the binding energy of ornidazole to the doped fullerenes is much more negative and the HOMO–LUMO gaps are significantly enlarged. Our results show that doping may improve C60 drug delivery properties.","PeriodicalId":20084,"journal":{"name":"Physical Chemistry Research","volume":"9 1","pages":"151-164"},"PeriodicalIF":1.4000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adsorption Behavior, Electronical and Thermodynamic Properties of Ornidazole Drug on C60 Fullerene Doped with Si, B and Al: A Quantum Mechanical Simulation\",\"authors\":\"M. Fekri, Rahim Bazvand, Mousa Solymani, M. R. Mehr\",\"doi\":\"10.22036/PCR.2020.244279.1814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, we investigated the interaction behavior of ornidazole drug on the surface of pristine as well as doped C60 fullerene with Si, B and Al using density functional theory (DFT) at B3LYP/6-31G* level in gas phase and water. To study ornidazole adsorption properties on the C60, we replaced a carbon atom with B, Si and Al atoms. After optimization of the structures, various parameters such as HOMO and LUMO energies, gap energy, adsorption energy, chemical hardness, chemical potential, dipole moment, electrophilicity index and thermodynamics data were calculated. In contrast to the pristine C60, the binding energy of ornidazole to the doped fullerenes is much more negative and the HOMO–LUMO gaps are significantly enlarged. Our results show that doping may improve C60 drug delivery properties.\",\"PeriodicalId\":20084,\"journal\":{\"name\":\"Physical Chemistry Research\",\"volume\":\"9 1\",\"pages\":\"151-164\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22036/PCR.2020.244279.1814\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22036/PCR.2020.244279.1814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Adsorption Behavior, Electronical and Thermodynamic Properties of Ornidazole Drug on C60 Fullerene Doped with Si, B and Al: A Quantum Mechanical Simulation
In this research, we investigated the interaction behavior of ornidazole drug on the surface of pristine as well as doped C60 fullerene with Si, B and Al using density functional theory (DFT) at B3LYP/6-31G* level in gas phase and water. To study ornidazole adsorption properties on the C60, we replaced a carbon atom with B, Si and Al atoms. After optimization of the structures, various parameters such as HOMO and LUMO energies, gap energy, adsorption energy, chemical hardness, chemical potential, dipole moment, electrophilicity index and thermodynamics data were calculated. In contrast to the pristine C60, the binding energy of ornidazole to the doped fullerenes is much more negative and the HOMO–LUMO gaps are significantly enlarged. Our results show that doping may improve C60 drug delivery properties.
期刊介绍:
The motivation for this new journal is the tremendous increasing of useful articles in the field of Physical Chemistry and the related subjects in recent years, and the need of communication between Physical Chemists, Physicists and Biophysicists. We attempt to establish this fruitful communication and quick publication. High quality original papers in English dealing with experimental, theoretical and applied research related to physics and chemistry are welcomed. This journal accepts your report for publication as a regular article, review, and Letter. Review articles discussing specific areas of physical chemistry of current chemical or physical importance are also published. Subjects of Interest: Thermodynamics, Statistical Mechanics, Statistical Thermodynamics, Molecular Spectroscopy, Quantum Chemistry, Computational Chemistry, Physical Chemistry of Life Sciences, Surface Chemistry, Catalysis, Physical Chemistry of Electrochemistry, Kinetics, Nanochemistry and Nanophysics, Liquid Crystals, Ionic Liquid, Photochemistry, Experimental article of Physical chemistry. Mathematical Chemistry.