软材料AFM纳米压痕中的截锥效应

Q3 Engineering Micro and Nanosystems Pub Date : 2023-02-09 DOI:10.2174/1876402915666230209140024
S. Kontomaris, A. Malamou
{"title":"软材料AFM纳米压痕中的截锥效应","authors":"S. Kontomaris, A. Malamou","doi":"10.2174/1876402915666230209140024","DOIUrl":null,"url":null,"abstract":"\n\nAtomic Force Microscopy (AFM) nanoindentation is the principal method for the characterization of soft materials at the nanoscale. In most cases, pyramidal tips are used and approximated to perfect cones. However, the extended use of the AFM tip may alter its sharpness.\n\n\n\nIn many cases, a truncated cone shape is appropriate for tip modeling. In this technical note, the equation that relates the force with the indentation depth when indenting an elastic half-space using a truncated cone is derived.\n\n\n\nThe nanoindentation equation for a truncated cone tip is derived using the fundamental differential equation that relates the sample’s contact stiffness with Young’s modulus.\n\n\n\nWhen fitting Sneddon’s equation (which is valid for a perfect cone) on data obtained using a truncated cone-shaped AFM tip, the results show a ‘pseudo-softening’ behavior.\n\n\n\nThe AFM tip's sharpness in nanoindentation experiments is a crucial parameter for obtaining the correct mechanical patterns of unknown samples.\n","PeriodicalId":18543,"journal":{"name":"Micro and Nanosystems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The truncated cone effect in AFM nanoindentation on soft materials\",\"authors\":\"S. Kontomaris, A. Malamou\",\"doi\":\"10.2174/1876402915666230209140024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nAtomic Force Microscopy (AFM) nanoindentation is the principal method for the characterization of soft materials at the nanoscale. In most cases, pyramidal tips are used and approximated to perfect cones. However, the extended use of the AFM tip may alter its sharpness.\\n\\n\\n\\nIn many cases, a truncated cone shape is appropriate for tip modeling. In this technical note, the equation that relates the force with the indentation depth when indenting an elastic half-space using a truncated cone is derived.\\n\\n\\n\\nThe nanoindentation equation for a truncated cone tip is derived using the fundamental differential equation that relates the sample’s contact stiffness with Young’s modulus.\\n\\n\\n\\nWhen fitting Sneddon’s equation (which is valid for a perfect cone) on data obtained using a truncated cone-shaped AFM tip, the results show a ‘pseudo-softening’ behavior.\\n\\n\\n\\nThe AFM tip's sharpness in nanoindentation experiments is a crucial parameter for obtaining the correct mechanical patterns of unknown samples.\\n\",\"PeriodicalId\":18543,\"journal\":{\"name\":\"Micro and Nanosystems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanosystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1876402915666230209140024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1876402915666230209140024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

摘要

原子力显微镜(AFM)纳米压痕是表征纳米级软质材料的主要方法。在大多数情况下,金字塔的尖端被使用,并近似为完美的锥体。然而,AFM尖端的长时间使用可能会改变其锐度。在许多情况下,截锥形适合于尖端造型。在本技术说明中,推导了用截锥压痕弹性半空间时力与压痕深度的关系方程。利用与试样接触刚度和杨氏模量相关的基本微分方程,推导了截锥尖端的纳米压痕方程。当对使用截锥形AFM尖端获得的数据拟合Sneddon方程(适用于完美锥体)时,结果显示出“伪软化”行为。在纳米压痕实验中,AFM针尖的锐度是获得未知样品正确力学模式的关键参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The truncated cone effect in AFM nanoindentation on soft materials
Atomic Force Microscopy (AFM) nanoindentation is the principal method for the characterization of soft materials at the nanoscale. In most cases, pyramidal tips are used and approximated to perfect cones. However, the extended use of the AFM tip may alter its sharpness. In many cases, a truncated cone shape is appropriate for tip modeling. In this technical note, the equation that relates the force with the indentation depth when indenting an elastic half-space using a truncated cone is derived. The nanoindentation equation for a truncated cone tip is derived using the fundamental differential equation that relates the sample’s contact stiffness with Young’s modulus. When fitting Sneddon’s equation (which is valid for a perfect cone) on data obtained using a truncated cone-shaped AFM tip, the results show a ‘pseudo-softening’ behavior. The AFM tip's sharpness in nanoindentation experiments is a crucial parameter for obtaining the correct mechanical patterns of unknown samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micro and Nanosystems
Micro and Nanosystems Engineering-Building and Construction
CiteScore
1.60
自引率
0.00%
发文量
50
期刊最新文献
Release Kinetics of Sulfentrazone from Chitosan Clay Sulfentrazone Nanocomposite Polythiophene/Copper Vanadate Nanoribbons and their Electrochemical Sensing Properties for Detecting Benzoic Acid Pharmaceutical Applications and Advances with Zetasizer: An Essential Analytical Tool for Size and Zeta Potential Analysis Global RC Interconnects with ADL Buffers for Low-Power Applications Transethosomal Carrier of Curcumin for Improved Topical Delivery: Optimization, In-vitro and Stability Assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1