{"title":"基于真实癫痫头部模型的发作间电生理源成像在术前评估中的前瞻性研究","authors":"Ruowei Qu;Zhaonan Wang;Shifeng Wang;Le Wang;Alan Wang;Guizhi Xu","doi":"10.23919/CJEE.2023.000012","DOIUrl":null,"url":null,"abstract":"Invasive techniques are becoming increasingly important in the presurgical evaluation of epilepsy. Adopting the electrophysiological source imaging (ESI) of interictal scalp electroencephalography (EEG) to localize the epileptogenic zone remains a challenge. The accuracy of the preoperative localization of the epileptogenic zone is key to curing epilepsy. The T1 MRI and the boundary element method were used to build the realistic head model. To solve the inverse problem, the distributed inverse solution and equivalent current dipole (ECD) methods were employed to locate the epileptogenic zone. Furthermore, a combination of inverse solution algorithms and Granger causality connectivity measures was evaluated. The ECD method exhibited excellent focalization in lateralization and localization, achieving a coincidence rate of 99.02% (\n<tex>$p < 0.05$</tex>\n) with the stereo electroencephalogram. The combination of ECD and the directed transfer function led to excellent matching between the information flow obtained from intracranial and scalp EEG recordings. The ECD inverse solution method showed the highest performance and could extract the discharge information at the cortex level from noninvasive low-density EEG data. Thus, the accurate preoperative localization of the epileptogenic zone could reduce the number of intracranial electrode implantations required.","PeriodicalId":36428,"journal":{"name":"Chinese Journal of Electrical Engineering","volume":"9 1","pages":"61-70"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/7873788/10093776/10093783.pdf","citationCount":"0","resultStr":"{\"title\":\"Interictal Electrophysiological Source Imaging Based on Realistic Epilepsy Head Model in Presurgical Evaluation: A Prospective Study\",\"authors\":\"Ruowei Qu;Zhaonan Wang;Shifeng Wang;Le Wang;Alan Wang;Guizhi Xu\",\"doi\":\"10.23919/CJEE.2023.000012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Invasive techniques are becoming increasingly important in the presurgical evaluation of epilepsy. Adopting the electrophysiological source imaging (ESI) of interictal scalp electroencephalography (EEG) to localize the epileptogenic zone remains a challenge. The accuracy of the preoperative localization of the epileptogenic zone is key to curing epilepsy. The T1 MRI and the boundary element method were used to build the realistic head model. To solve the inverse problem, the distributed inverse solution and equivalent current dipole (ECD) methods were employed to locate the epileptogenic zone. Furthermore, a combination of inverse solution algorithms and Granger causality connectivity measures was evaluated. The ECD method exhibited excellent focalization in lateralization and localization, achieving a coincidence rate of 99.02% (\\n<tex>$p < 0.05$</tex>\\n) with the stereo electroencephalogram. The combination of ECD and the directed transfer function led to excellent matching between the information flow obtained from intracranial and scalp EEG recordings. The ECD inverse solution method showed the highest performance and could extract the discharge information at the cortex level from noninvasive low-density EEG data. Thus, the accurate preoperative localization of the epileptogenic zone could reduce the number of intracranial electrode implantations required.\",\"PeriodicalId\":36428,\"journal\":{\"name\":\"Chinese Journal of Electrical Engineering\",\"volume\":\"9 1\",\"pages\":\"61-70\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/7873788/10093776/10093783.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Electrical Engineering\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10093783/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electrical Engineering","FirstCategoryId":"1087","ListUrlMain":"https://ieeexplore.ieee.org/document/10093783/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Interictal Electrophysiological Source Imaging Based on Realistic Epilepsy Head Model in Presurgical Evaluation: A Prospective Study
Invasive techniques are becoming increasingly important in the presurgical evaluation of epilepsy. Adopting the electrophysiological source imaging (ESI) of interictal scalp electroencephalography (EEG) to localize the epileptogenic zone remains a challenge. The accuracy of the preoperative localization of the epileptogenic zone is key to curing epilepsy. The T1 MRI and the boundary element method were used to build the realistic head model. To solve the inverse problem, the distributed inverse solution and equivalent current dipole (ECD) methods were employed to locate the epileptogenic zone. Furthermore, a combination of inverse solution algorithms and Granger causality connectivity measures was evaluated. The ECD method exhibited excellent focalization in lateralization and localization, achieving a coincidence rate of 99.02% (
$p < 0.05$
) with the stereo electroencephalogram. The combination of ECD and the directed transfer function led to excellent matching between the information flow obtained from intracranial and scalp EEG recordings. The ECD inverse solution method showed the highest performance and could extract the discharge information at the cortex level from noninvasive low-density EEG data. Thus, the accurate preoperative localization of the epileptogenic zone could reduce the number of intracranial electrode implantations required.