5.85 mw 3.1 - 23.7 ghz两级CMOS VGA与2.53 db NF使用并发电流转向

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Microwave and Wireless Components Letters Pub Date : 2022-11-01 DOI:10.1109/LMWC.2022.3189593
Jin-Fa Chang, Yo‐Sheng Lin
{"title":"5.85 mw 3.1 - 23.7 ghz两级CMOS VGA与2.53 db NF使用并发电流转向","authors":"Jin-Fa Chang, Yo‐Sheng Lin","doi":"10.1109/LMWC.2022.3189593","DOIUrl":null,"url":null,"abstract":"A low-power and low noise-figure (NF) 3.1–23.7-GHz CMOS variable-gain amplifier (VGA) is presented. The VGA composes of a complimentary common-source (CCS) first stage, followed by a common-source (CS) second stage. Low power and NF and wideband <inline-formula> <tex-math notation=\"LaTeX\">$S_{11}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation=\"LaTeX\">$S_{21}$ </tex-math></inline-formula> are achieved due to the current-reused CCS input stage with multiple inductive impedance matching and gain compensation. A large gain tuning range (with low NF) is achieved due to the concurrent gate–voltage tuning (or current steering) of the first and the second stages. The VGA consumes 5.85 mW (at <inline-formula> <tex-math notation=\"LaTeX\">$V_{\\mathrm {ctrl}}$ </tex-math></inline-formula> of 1 V) and achieves excellent 3-dB bandwidth (<inline-formula> <tex-math notation=\"LaTeX\">$f_{3\\,\\mathrm {dB}}$ </tex-math></inline-formula>) of 20.6 GHz (3.1–23.7 GHz), maximum <inline-formula> <tex-math notation=\"LaTeX\">$S_{21}$ </tex-math></inline-formula> of 11.9 dB, minimum NF (NFmin) of 2.53 dB, average NF (NFavg) of 3.97 dB, small group delay (GD) variation of ±16.5 ps, and input third-order intercept point (IIP3) of −6.5 dBm. Moreover, the VGA achieves a decent gain tuning range of 23.4 dB (−5.4 to 18 dB) for <inline-formula> <tex-math notation=\"LaTeX\">$V_{\\mathrm {ctrl}}$ </tex-math></inline-formula> of 0.6–1.6 V. The chip area is 0.364 mm2.","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":"32 1","pages":"1331-1334"},"PeriodicalIF":2.9000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"5.85-mW 3.1–23.7-GHz Two-Stage CMOS VGA With 2.53-dB NF Using Concurrent Current Steering\",\"authors\":\"Jin-Fa Chang, Yo‐Sheng Lin\",\"doi\":\"10.1109/LMWC.2022.3189593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A low-power and low noise-figure (NF) 3.1–23.7-GHz CMOS variable-gain amplifier (VGA) is presented. The VGA composes of a complimentary common-source (CCS) first stage, followed by a common-source (CS) second stage. Low power and NF and wideband <inline-formula> <tex-math notation=\\\"LaTeX\\\">$S_{11}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation=\\\"LaTeX\\\">$S_{21}$ </tex-math></inline-formula> are achieved due to the current-reused CCS input stage with multiple inductive impedance matching and gain compensation. A large gain tuning range (with low NF) is achieved due to the concurrent gate–voltage tuning (or current steering) of the first and the second stages. The VGA consumes 5.85 mW (at <inline-formula> <tex-math notation=\\\"LaTeX\\\">$V_{\\\\mathrm {ctrl}}$ </tex-math></inline-formula> of 1 V) and achieves excellent 3-dB bandwidth (<inline-formula> <tex-math notation=\\\"LaTeX\\\">$f_{3\\\\,\\\\mathrm {dB}}$ </tex-math></inline-formula>) of 20.6 GHz (3.1–23.7 GHz), maximum <inline-formula> <tex-math notation=\\\"LaTeX\\\">$S_{21}$ </tex-math></inline-formula> of 11.9 dB, minimum NF (NFmin) of 2.53 dB, average NF (NFavg) of 3.97 dB, small group delay (GD) variation of ±16.5 ps, and input third-order intercept point (IIP3) of −6.5 dBm. Moreover, the VGA achieves a decent gain tuning range of 23.4 dB (−5.4 to 18 dB) for <inline-formula> <tex-math notation=\\\"LaTeX\\\">$V_{\\\\mathrm {ctrl}}$ </tex-math></inline-formula> of 0.6–1.6 V. The chip area is 0.364 mm2.\",\"PeriodicalId\":13130,\"journal\":{\"name\":\"IEEE Microwave and Wireless Components Letters\",\"volume\":\"32 1\",\"pages\":\"1331-1334\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Microwave and Wireless Components Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/LMWC.2022.3189593\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Microwave and Wireless Components Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LMWC.2022.3189593","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

介绍了一种低功耗低噪声系数(NF)3.1–23.7-GHz CMOS可变增益放大器(VGA)。VGA由互补公共源(CCS)第一级和公共源(CS)第二级组成。由于具有多重电感阻抗匹配和增益补偿的电流复用CCS输入级,实现了低功率和NF以及宽带$S{11}$和$S{21}$。由于第一级和第二级同时进行栅极电压调谐(或电流控制),实现了大的增益调谐范围(具有低NF)。VGA消耗5.85 mW(在1V的$V_{\mathrm{ctrl}}$下),并实现了20.6 GHz(3.1–23.7 GHz)的出色的3dB带宽($f_{3\,\mathrm}dB}$)、11.9 dB的最大$S_{21}$、2.53 dB的最小NF(NFmin)、3.97 dB的平均NF(NFavg)、±16.5 ps的小组延迟(GD)变化和−6.5 dBm的输入三阶截距点(IIP3)。此外,对于0.6–1.6 V的$V_{\mathrm{ctrl}}$,VGA实现了23.4 dB(−5.4至18 dB)的良好增益调谐范围。芯片面积为0.364 mm2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
5.85-mW 3.1–23.7-GHz Two-Stage CMOS VGA With 2.53-dB NF Using Concurrent Current Steering
A low-power and low noise-figure (NF) 3.1–23.7-GHz CMOS variable-gain amplifier (VGA) is presented. The VGA composes of a complimentary common-source (CCS) first stage, followed by a common-source (CS) second stage. Low power and NF and wideband $S_{11}$ and $S_{21}$ are achieved due to the current-reused CCS input stage with multiple inductive impedance matching and gain compensation. A large gain tuning range (with low NF) is achieved due to the concurrent gate–voltage tuning (or current steering) of the first and the second stages. The VGA consumes 5.85 mW (at $V_{\mathrm {ctrl}}$ of 1 V) and achieves excellent 3-dB bandwidth ( $f_{3\,\mathrm {dB}}$ ) of 20.6 GHz (3.1–23.7 GHz), maximum $S_{21}$ of 11.9 dB, minimum NF (NFmin) of 2.53 dB, average NF (NFavg) of 3.97 dB, small group delay (GD) variation of ±16.5 ps, and input third-order intercept point (IIP3) of −6.5 dBm. Moreover, the VGA achieves a decent gain tuning range of 23.4 dB (−5.4 to 18 dB) for $V_{\mathrm {ctrl}}$ of 0.6–1.6 V. The chip area is 0.364 mm2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Microwave and Wireless Components Letters
IEEE Microwave and Wireless Components Letters 工程技术-工程:电子与电气
自引率
13.30%
发文量
376
审稿时长
3.0 months
期刊介绍: The IEEE Microwave and Wireless Components Letters (MWCL) publishes four-page papers (3 pages of text + up to 1 page of references) that focus on microwave theory, techniques and applications as they relate to components, devices, circuits, biological effects, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, medical and industrial activities. Microwave theory and techniques relates to electromagnetic waves in the frequency range of a few MHz and a THz; other spectral regions and wave types are included within the scope of the MWCL whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.
期刊最新文献
A Broadband Ka-Band Waveguide Magic-T With Compact Inner Ridge Matching A Broadband 10–43-GHz High-Gain LNA MMIC Using Coupled-Line Feedback in 0.15-μm GaAs pHEMT Technology A Low Power Sub-GHz Wideband LNA Employing Current-Reuse and Device-Reuse Positive Shunt-Feedback Technique Accurate Magnetic Coupling Coefficient Modeling of 3-D Transformer Based on TSV Effect of Different Shapes on the Measurement of Dielectric Constants of Low-Loss Materials With Rectangular Waveguides at X-Band
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1