V. H. Carrera-Escobedo, Kevin Hintze-Madonado, A. Encinas-Oropesa
{"title":"圆柱形状磁性粒子的静磁模型","authors":"V. H. Carrera-Escobedo, Kevin Hintze-Madonado, A. Encinas-Oropesa","doi":"10.31349/revmexfis.69.041605","DOIUrl":null,"url":null,"abstract":"\n \n \nBuilding micro and macro sized structures using compacted magnetic nanoparticles is a widely used approach that has proven a great potential as the basis for novel materials made by design. These materials are made by compactation of soft magnetic particles in the nano o micrometer sizes and their macroscopic properties are mostly governed by magnetostatic effects and the combination of the intervening shapes, namely those of the individual particles and that of the piece made with these particles. Herein a simplified mean-field model is presented to describe the magnetostatic effects in soft magnetic composites with cylindrical macroscopic shape made of densely packed ideal spherical soft magnetic particles. The model allows calculating the main magnetic parameters of the system as well as their most relevant tendencies as a function of its main parameters. Furthermore, the model has also been successfully applied to arrays of interacting macroscopic shapes, which provides a further controllable magnetic parameter. \n \n \n","PeriodicalId":21538,"journal":{"name":"Revista Mexicana De Fisica","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetostatic model for magnetic particle agregagates with cylindrical shapes\",\"authors\":\"V. H. Carrera-Escobedo, Kevin Hintze-Madonado, A. Encinas-Oropesa\",\"doi\":\"10.31349/revmexfis.69.041605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n \\nBuilding micro and macro sized structures using compacted magnetic nanoparticles is a widely used approach that has proven a great potential as the basis for novel materials made by design. These materials are made by compactation of soft magnetic particles in the nano o micrometer sizes and their macroscopic properties are mostly governed by magnetostatic effects and the combination of the intervening shapes, namely those of the individual particles and that of the piece made with these particles. Herein a simplified mean-field model is presented to describe the magnetostatic effects in soft magnetic composites with cylindrical macroscopic shape made of densely packed ideal spherical soft magnetic particles. The model allows calculating the main magnetic parameters of the system as well as their most relevant tendencies as a function of its main parameters. Furthermore, the model has also been successfully applied to arrays of interacting macroscopic shapes, which provides a further controllable magnetic parameter. \\n \\n \\n\",\"PeriodicalId\":21538,\"journal\":{\"name\":\"Revista Mexicana De Fisica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Mexicana De Fisica\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.31349/revmexfis.69.041605\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Mexicana De Fisica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.31349/revmexfis.69.041605","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Magnetostatic model for magnetic particle agregagates with cylindrical shapes
Building micro and macro sized structures using compacted magnetic nanoparticles is a widely used approach that has proven a great potential as the basis for novel materials made by design. These materials are made by compactation of soft magnetic particles in the nano o micrometer sizes and their macroscopic properties are mostly governed by magnetostatic effects and the combination of the intervening shapes, namely those of the individual particles and that of the piece made with these particles. Herein a simplified mean-field model is presented to describe the magnetostatic effects in soft magnetic composites with cylindrical macroscopic shape made of densely packed ideal spherical soft magnetic particles. The model allows calculating the main magnetic parameters of the system as well as their most relevant tendencies as a function of its main parameters. Furthermore, the model has also been successfully applied to arrays of interacting macroscopic shapes, which provides a further controllable magnetic parameter.
期刊介绍:
Durante los últimos años, los responsables de la Revista Mexicana de Física, la Revista Mexicana de Física E y la Revista Mexicana de Física S, hemos realizado esfuerzos para fortalecer la presencia de estas publicaciones en nuestra página Web ( http://rmf.smf.mx).