Yucan Peng, Jun Chen, Alex Y. Song, Peter B. Catrysse, Po-Chun Hsu, Lili Cai, Bofei Liu, Yangying Zhu, Guangmin Zhou, David S. Wu, Hye Ryoung Lee, Shanhui Fan, Yi Cui
{"title":"用于大规模辐射冷却织物的纳米多孔聚乙烯微纤维","authors":"Yucan Peng, Jun Chen, Alex Y. Song, Peter B. Catrysse, Po-Chun Hsu, Lili Cai, Bofei Liu, Yangying Zhu, Guangmin Zhou, David S. Wu, Hye Ryoung Lee, Shanhui Fan, Yi Cui","doi":"10.1038/s41893-018-0023-2","DOIUrl":null,"url":null,"abstract":"Global warming and energy crises severely limit the ability of human civilization to develop along a sustainable path. Increasing renewable energy sources and decreasing energy consumption are fundamental steps to achieve sustainability. Technological innovations that allow energy-saving behaviour can support sustainable development pathways. Energy-saving fabrics with a superior cooling effect and satisfactory wearability properties provide a novel way of saving the energy used by indoor cooling systems. Here, we report the large-scale extrusion of uniform and continuous nanoporous polyethylene (nanoPE) microfibres with cotton-like softness for industrial fabric production. The nanopores embedded in the fibre effectively scatter visible light to make it opaque without compromising the mid-infrared transparency. Moreover, using industrial machines, the nanoPE microfibres are utilized to mass produce fabrics. Compared with commercial cotton fabric of the same thickness, the nanoPE fabric exhibits a great cooling power, lowering the human skin temperature by 2.3 °C, which corresponds to a greater than 20% saving on indoor cooling energy. Besides the superior cooling effect, the nanoPE fabric also displays impressive wearability and durability. As a result, nanoPE microfibres represent basic building blocks to revolutionize fabrics for human body cooling and pave an innovative way to sustainable energy. Energy-saving innovations, such as fabrics with cooling effects, contribute to sustainability. This study reports the large-scale extrusion of uniform and continuous nanoporous polyethylene microfibres with cotton-like softness for wearable fabrics. The fabric can lower human skin temperature by 2.3 °C with over 20% savings on indoor cooling energy.","PeriodicalId":19056,"journal":{"name":"Nature Sustainability","volume":null,"pages":null},"PeriodicalIF":25.7000,"publicationDate":"2018-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/s41893-018-0023-2","citationCount":"300","resultStr":"{\"title\":\"Nanoporous polyethylene microfibres for large-scale radiative cooling fabric\",\"authors\":\"Yucan Peng, Jun Chen, Alex Y. Song, Peter B. Catrysse, Po-Chun Hsu, Lili Cai, Bofei Liu, Yangying Zhu, Guangmin Zhou, David S. Wu, Hye Ryoung Lee, Shanhui Fan, Yi Cui\",\"doi\":\"10.1038/s41893-018-0023-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Global warming and energy crises severely limit the ability of human civilization to develop along a sustainable path. Increasing renewable energy sources and decreasing energy consumption are fundamental steps to achieve sustainability. Technological innovations that allow energy-saving behaviour can support sustainable development pathways. Energy-saving fabrics with a superior cooling effect and satisfactory wearability properties provide a novel way of saving the energy used by indoor cooling systems. Here, we report the large-scale extrusion of uniform and continuous nanoporous polyethylene (nanoPE) microfibres with cotton-like softness for industrial fabric production. The nanopores embedded in the fibre effectively scatter visible light to make it opaque without compromising the mid-infrared transparency. Moreover, using industrial machines, the nanoPE microfibres are utilized to mass produce fabrics. Compared with commercial cotton fabric of the same thickness, the nanoPE fabric exhibits a great cooling power, lowering the human skin temperature by 2.3 °C, which corresponds to a greater than 20% saving on indoor cooling energy. Besides the superior cooling effect, the nanoPE fabric also displays impressive wearability and durability. As a result, nanoPE microfibres represent basic building blocks to revolutionize fabrics for human body cooling and pave an innovative way to sustainable energy. Energy-saving innovations, such as fabrics with cooling effects, contribute to sustainability. This study reports the large-scale extrusion of uniform and continuous nanoporous polyethylene microfibres with cotton-like softness for wearable fabrics. The fabric can lower human skin temperature by 2.3 °C with over 20% savings on indoor cooling energy.\",\"PeriodicalId\":19056,\"journal\":{\"name\":\"Nature Sustainability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":25.7000,\"publicationDate\":\"2018-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1038/s41893-018-0023-2\",\"citationCount\":\"300\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Sustainability\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.nature.com/articles/s41893-018-0023-2\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Sustainability","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s41893-018-0023-2","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Nanoporous polyethylene microfibres for large-scale radiative cooling fabric
Global warming and energy crises severely limit the ability of human civilization to develop along a sustainable path. Increasing renewable energy sources and decreasing energy consumption are fundamental steps to achieve sustainability. Technological innovations that allow energy-saving behaviour can support sustainable development pathways. Energy-saving fabrics with a superior cooling effect and satisfactory wearability properties provide a novel way of saving the energy used by indoor cooling systems. Here, we report the large-scale extrusion of uniform and continuous nanoporous polyethylene (nanoPE) microfibres with cotton-like softness for industrial fabric production. The nanopores embedded in the fibre effectively scatter visible light to make it opaque without compromising the mid-infrared transparency. Moreover, using industrial machines, the nanoPE microfibres are utilized to mass produce fabrics. Compared with commercial cotton fabric of the same thickness, the nanoPE fabric exhibits a great cooling power, lowering the human skin temperature by 2.3 °C, which corresponds to a greater than 20% saving on indoor cooling energy. Besides the superior cooling effect, the nanoPE fabric also displays impressive wearability and durability. As a result, nanoPE microfibres represent basic building blocks to revolutionize fabrics for human body cooling and pave an innovative way to sustainable energy. Energy-saving innovations, such as fabrics with cooling effects, contribute to sustainability. This study reports the large-scale extrusion of uniform and continuous nanoporous polyethylene microfibres with cotton-like softness for wearable fabrics. The fabric can lower human skin temperature by 2.3 °C with over 20% savings on indoor cooling energy.
期刊介绍:
Nature Sustainability aims to facilitate cross-disciplinary dialogues and bring together research fields that contribute to understanding how we organize our lives in a finite world and the impacts of our actions.
Nature Sustainability will not only publish fundamental research but also significant investigations into policies and solutions for ensuring human well-being now and in the future.Its ultimate goal is to address the greatest challenges of our time.