{"title":"考虑热预应力效应的核电站反应堆压力容器安全裕度的确定","authors":"Oleksii Ishchenko, M. Kryshchuk","doi":"10.20535/2521-1943.2022.6.3.268515","DOIUrl":null,"url":null,"abstract":"In case for nuclear power plants long-term service operation over their design life, it is necessary to calculate reactor pressure vessel (RPV) strength and durability acknowledgment (static strength, strength under cyclic and seismic loads, brittle fracture resistance (BFR) include) the as one of the most important NPP structure. Usually, according to the brittle strength assessment, RPV resource is determined, that is, time of its subsequent safe operation. The purpose of this work is assessed BFR RPV at potential emergency accidents (EA) using the Ukrainian warm pre-stress approach. The calculated thermohydrodynamic parameters at EA were used to calculate the stress-strain state of the developed reactor finite element (FE) model. For researching, the most indicative scenarios were selected: where reactor is cooled at a high pressure. In RPV FE model cracks are modeled at the most dangerous places - welds and nozzle. Stress intensity factor (SIF) distribution along crack front and temperature for the most dangerous accidents in terms of BFR are presented in figures. Brittle strength condition is ensured during the nuclear power plants service operation for up to 60 years, which is more than 1.5 times more than the oldest Ukrainian power plant with VVER-1000. For some emergency accidents, warm pre-stress really significantly increased RPV safety margin, but for the most dangerous accidents, the results are the same as without taking into account WPS.","PeriodicalId":32423,"journal":{"name":"Mechanics and Advanced Technologies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Safety margin determination of the nuclear power plant reactor pressure vessel with taking into account warm pre-stress effect\",\"authors\":\"Oleksii Ishchenko, M. Kryshchuk\",\"doi\":\"10.20535/2521-1943.2022.6.3.268515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In case for nuclear power plants long-term service operation over their design life, it is necessary to calculate reactor pressure vessel (RPV) strength and durability acknowledgment (static strength, strength under cyclic and seismic loads, brittle fracture resistance (BFR) include) the as one of the most important NPP structure. Usually, according to the brittle strength assessment, RPV resource is determined, that is, time of its subsequent safe operation. The purpose of this work is assessed BFR RPV at potential emergency accidents (EA) using the Ukrainian warm pre-stress approach. The calculated thermohydrodynamic parameters at EA were used to calculate the stress-strain state of the developed reactor finite element (FE) model. For researching, the most indicative scenarios were selected: where reactor is cooled at a high pressure. In RPV FE model cracks are modeled at the most dangerous places - welds and nozzle. Stress intensity factor (SIF) distribution along crack front and temperature for the most dangerous accidents in terms of BFR are presented in figures. Brittle strength condition is ensured during the nuclear power plants service operation for up to 60 years, which is more than 1.5 times more than the oldest Ukrainian power plant with VVER-1000. For some emergency accidents, warm pre-stress really significantly increased RPV safety margin, but for the most dangerous accidents, the results are the same as without taking into account WPS.\",\"PeriodicalId\":32423,\"journal\":{\"name\":\"Mechanics and Advanced Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics and Advanced Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20535/2521-1943.2022.6.3.268515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics and Advanced Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20535/2521-1943.2022.6.3.268515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Safety margin determination of the nuclear power plant reactor pressure vessel with taking into account warm pre-stress effect
In case for nuclear power plants long-term service operation over their design life, it is necessary to calculate reactor pressure vessel (RPV) strength and durability acknowledgment (static strength, strength under cyclic and seismic loads, brittle fracture resistance (BFR) include) the as one of the most important NPP structure. Usually, according to the brittle strength assessment, RPV resource is determined, that is, time of its subsequent safe operation. The purpose of this work is assessed BFR RPV at potential emergency accidents (EA) using the Ukrainian warm pre-stress approach. The calculated thermohydrodynamic parameters at EA were used to calculate the stress-strain state of the developed reactor finite element (FE) model. For researching, the most indicative scenarios were selected: where reactor is cooled at a high pressure. In RPV FE model cracks are modeled at the most dangerous places - welds and nozzle. Stress intensity factor (SIF) distribution along crack front and temperature for the most dangerous accidents in terms of BFR are presented in figures. Brittle strength condition is ensured during the nuclear power plants service operation for up to 60 years, which is more than 1.5 times more than the oldest Ukrainian power plant with VVER-1000. For some emergency accidents, warm pre-stress really significantly increased RPV safety margin, but for the most dangerous accidents, the results are the same as without taking into account WPS.