深度学习应用于出血和脑肿瘤的检测

IF 0.4 Q4 INFORMATION SCIENCE & LIBRARY SCIENCE AtoZ-Novas Praticas em Informacao e Conhecimento Pub Date : 2021-12-03 DOI:10.5380/atoz.v10i3.81284
Mauricio Fernando Hidalgo Barrientos, Bryan Isaac Hayes Ortiz, Ignacio Delgadillo Vera, Manuel Goyo Escalona
{"title":"深度学习应用于出血和脑肿瘤的检测","authors":"Mauricio Fernando Hidalgo Barrientos, Bryan Isaac Hayes Ortiz, Ignacio Delgadillo Vera, Manuel Goyo Escalona","doi":"10.5380/atoz.v10i3.81284","DOIUrl":null,"url":null,"abstract":"Introdução: Um dos problemas que afeta a saúde no Chile refere-se às patologias cerebrais, à realização de exames e à longa espera pela obtenção dos resultados (atrasos no diagnóstico e tratamento). Atualmente, os exames são enviados ao exterior para serem processados e o tempo de espera jog contra o paciente. Dada a realidade, nosso documento propõe um modelo de deep learning para predição de imagens cerebrais que permite obter um diagnóstico prévio, mas não definitivo, em virtude de diminuir o tempo do processo e, se necessário, priorizar pacientes cuja vida estaria potencialmente em risco. Métodos: O desenvolvimento usou uma abordagem RAD iterativa e as imagens foram coletadas do Kaggle. Além disso, o conjunto de dados é redimensionado para normalizar o tamanho e geramos novas imagens usando “data augmentation”. As imagens foram processadas em redes convolucionais, investigando diferentes configurações da rede, seu otimizador e a função de ativação, até chegarmos a um modelo que consideramos razoável. Resultados: Com o modelo definitivo os resultados ultrapassam 80% de acertos nas previsões e descobrimos que separar patologias (hemorragias e tumores) foi fundamental para este resultado. Conclusões: alcançamos uma ferramenta de diagnóstico prévio, mas a pesquisa deve ser continuada em virtude do aumento da precisão. Uma próxima etapa é expandir o conjunto de dados com imagens de outras fontes e separar o modelo para analisar patologias de forma independente. Encorajamos mais investigação, uma vez que este tipo de apoio pode ajudar a salvar vidas.","PeriodicalId":40617,"journal":{"name":"AtoZ-Novas Praticas em Informacao e Conhecimento","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning aplicado para la detección de hemorragias y tumores cerebrales\",\"authors\":\"Mauricio Fernando Hidalgo Barrientos, Bryan Isaac Hayes Ortiz, Ignacio Delgadillo Vera, Manuel Goyo Escalona\",\"doi\":\"10.5380/atoz.v10i3.81284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introdução: Um dos problemas que afeta a saúde no Chile refere-se às patologias cerebrais, à realização de exames e à longa espera pela obtenção dos resultados (atrasos no diagnóstico e tratamento). Atualmente, os exames são enviados ao exterior para serem processados e o tempo de espera jog contra o paciente. Dada a realidade, nosso documento propõe um modelo de deep learning para predição de imagens cerebrais que permite obter um diagnóstico prévio, mas não definitivo, em virtude de diminuir o tempo do processo e, se necessário, priorizar pacientes cuja vida estaria potencialmente em risco. Métodos: O desenvolvimento usou uma abordagem RAD iterativa e as imagens foram coletadas do Kaggle. Além disso, o conjunto de dados é redimensionado para normalizar o tamanho e geramos novas imagens usando “data augmentation”. As imagens foram processadas em redes convolucionais, investigando diferentes configurações da rede, seu otimizador e a função de ativação, até chegarmos a um modelo que consideramos razoável. Resultados: Com o modelo definitivo os resultados ultrapassam 80% de acertos nas previsões e descobrimos que separar patologias (hemorragias e tumores) foi fundamental para este resultado. Conclusões: alcançamos uma ferramenta de diagnóstico prévio, mas a pesquisa deve ser continuada em virtude do aumento da precisão. Uma próxima etapa é expandir o conjunto de dados com imagens de outras fontes e separar o modelo para analisar patologias de forma independente. Encorajamos mais investigação, uma vez que este tipo de apoio pode ajudar a salvar vidas.\",\"PeriodicalId\":40617,\"journal\":{\"name\":\"AtoZ-Novas Praticas em Informacao e Conhecimento\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AtoZ-Novas Praticas em Informacao e Conhecimento\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5380/atoz.v10i3.81284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AtoZ-Novas Praticas em Informacao e Conhecimento","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5380/atoz.v10i3.81284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

导言:影响智利健康的问题之一是大脑疾病、检查和结果的长时间等待(诊断和治疗的延误)。目前,检查被送往国外处理,等待时间对患者不利。鉴于现实情况,我们的论文提出了一种用于预测大脑图像的深度学习模型,该模型允许获得预先诊断,但不是最终诊断,因为它减少了过程的时间,并在必要时优先考虑那些可能有生命危险的患者。方法:采用迭代RAD方法进行开发,并从Kaggle收集图像。此外,数据集被调整大小以规范化大小,我们使用“日期增加”生成新的图像。在卷积网络中对图像进行处理,研究不同的网络配置、优化器和激活函数,得到合理的模型。结果:在最终模型中,预测的准确率超过80%,我们发现病理(出血和肿瘤)的分离是这个结果的基础。结论:我们获得了一个预先诊断工具,但由于准确性的提高,研究必须继续。下一步是用其他来源的图像扩展数据集,并分离模型以独立分析病理。我们鼓励更多的研究,因为这种支持可以帮助拯救生命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep learning aplicado para la detección de hemorragias y tumores cerebrales
Introdução: Um dos problemas que afeta a saúde no Chile refere-se às patologias cerebrais, à realização de exames e à longa espera pela obtenção dos resultados (atrasos no diagnóstico e tratamento). Atualmente, os exames são enviados ao exterior para serem processados e o tempo de espera jog contra o paciente. Dada a realidade, nosso documento propõe um modelo de deep learning para predição de imagens cerebrais que permite obter um diagnóstico prévio, mas não definitivo, em virtude de diminuir o tempo do processo e, se necessário, priorizar pacientes cuja vida estaria potencialmente em risco. Métodos: O desenvolvimento usou uma abordagem RAD iterativa e as imagens foram coletadas do Kaggle. Além disso, o conjunto de dados é redimensionado para normalizar o tamanho e geramos novas imagens usando “data augmentation”. As imagens foram processadas em redes convolucionais, investigando diferentes configurações da rede, seu otimizador e a função de ativação, até chegarmos a um modelo que consideramos razoável. Resultados: Com o modelo definitivo os resultados ultrapassam 80% de acertos nas previsões e descobrimos que separar patologias (hemorragias e tumores) foi fundamental para este resultado. Conclusões: alcançamos uma ferramenta de diagnóstico prévio, mas a pesquisa deve ser continuada em virtude do aumento da precisão. Uma próxima etapa é expandir o conjunto de dados com imagens de outras fontes e separar o modelo para analisar patologias de forma independente. Encorajamos mais investigação, uma vez que este tipo de apoio pode ajudar a salvar vidas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
AtoZ-Novas Praticas em Informacao e Conhecimento
AtoZ-Novas Praticas em Informacao e Conhecimento INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
0.40
自引率
33.30%
发文量
21
审稿时长
28 weeks
期刊最新文献
Disseminação Seletiva da Informação e Sistemas de Recomendação: relações teórico-conceituais com ênfase na Plataforma Netflix Classificação das percepções de stakeholders sobre o futuro do Brasil utilizando aprendizado de máquina A competência leitora na biblioteca escolar: conhecimentos e habilidades para o desenvolvimento da leitura crítica na biblioteca escolar do ensino fundamental O uso do método Design Science Research na Ciência da Informação: uma revisão sistemática da literatura Expediente v.11, 2022
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1