为新西兰屈曲约束支撑框架的同行评审收集的证据

D. Court-Patience, M. Garnich
{"title":"为新西兰屈曲约束支撑框架的同行评审收集的证据","authors":"D. Court-Patience, M. Garnich","doi":"10.5459/bnzsee.54.3.197-210","DOIUrl":null,"url":null,"abstract":"Buckling-restrained braces (BRBs) form a bracing system that provides lateral strength and stiffness to a building. These systems have been shown to provide larger energy dissipation in severe earthquake events compared to concentrically and eccentrically braced frames (CBFs and EBFs). However, unlike CBFs and EBFs there is no guidance document or specific instructions in regulatory standards for the design of buckling-restrained braced frames (BRBFs) in New Zealand. This makes it difficult for structural engineers to be aware of all the strength and stability considerations required for the safe design of BRBFs. Currently, structural designs that include BRBFs require a peer-review to gain building compliance. The American standard ANSI/AISC 341-16 is the adopted document used in New Zealand for guidance in how to collect evidence showing a BRBF system will perform as intended. However, as ANSI/AISC 341-16 is not a governing document in New Zealand, instructions within the document are not enforced and can be made to fit within the constraints of a building project. By way of example, this paper presents the experimental test process and results acquired from pre-qualification testing of three different commercially available BRB architypes. Of the three BRB designs investigated, one failed prematurely due to global buckling. A manufacturing error was the likely cause of this premature failure. This failure highlights the need for strict quality control during fabrication. All remaining BRBs performed well, meeting the acceptance criteria set out in ANSI/AISC 341-16. Positive pre-qualification results meant the BRBs were installed in medium to high-rise buildings throughout New Zealand. The importance of sub-assemblage testing to assess the performance of a BRB and its frame components is also discussed. Finally, the capability of high fidelity modelling to supplemental physical testing is also presented.","PeriodicalId":46396,"journal":{"name":"Bulletin of the New Zealand Society for Earthquake Engineering","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evidence collected for peer review of buckling-restrained braced frames in New Zealand\",\"authors\":\"D. Court-Patience, M. Garnich\",\"doi\":\"10.5459/bnzsee.54.3.197-210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Buckling-restrained braces (BRBs) form a bracing system that provides lateral strength and stiffness to a building. These systems have been shown to provide larger energy dissipation in severe earthquake events compared to concentrically and eccentrically braced frames (CBFs and EBFs). However, unlike CBFs and EBFs there is no guidance document or specific instructions in regulatory standards for the design of buckling-restrained braced frames (BRBFs) in New Zealand. This makes it difficult for structural engineers to be aware of all the strength and stability considerations required for the safe design of BRBFs. Currently, structural designs that include BRBFs require a peer-review to gain building compliance. The American standard ANSI/AISC 341-16 is the adopted document used in New Zealand for guidance in how to collect evidence showing a BRBF system will perform as intended. However, as ANSI/AISC 341-16 is not a governing document in New Zealand, instructions within the document are not enforced and can be made to fit within the constraints of a building project. By way of example, this paper presents the experimental test process and results acquired from pre-qualification testing of three different commercially available BRB architypes. Of the three BRB designs investigated, one failed prematurely due to global buckling. A manufacturing error was the likely cause of this premature failure. This failure highlights the need for strict quality control during fabrication. All remaining BRBs performed well, meeting the acceptance criteria set out in ANSI/AISC 341-16. Positive pre-qualification results meant the BRBs were installed in medium to high-rise buildings throughout New Zealand. The importance of sub-assemblage testing to assess the performance of a BRB and its frame components is also discussed. Finally, the capability of high fidelity modelling to supplemental physical testing is also presented.\",\"PeriodicalId\":46396,\"journal\":{\"name\":\"Bulletin of the New Zealand Society for Earthquake Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the New Zealand Society for Earthquake Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5459/bnzsee.54.3.197-210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the New Zealand Society for Earthquake Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5459/bnzsee.54.3.197-210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 1

摘要

屈曲约束支撑(BRB)形成支撑系统,为建筑物提供横向强度和刚度。与同心和偏心支撑框架(CBF和EBF)相比,这些系统已被证明在严重地震事件中提供了更大的能量耗散。然而,与CBF和EBF不同的是,新西兰没有关于屈曲约束支撑框架(BRBF)设计的指导文件或监管标准中的具体说明。这使得结构工程师很难意识到BRBF安全设计所需的所有强度和稳定性考虑因素。目前,包括BRBF的结构设计需要进行同行评审,以获得建筑合规性。美国标准ANSI/AISC 341-16是新西兰采用的文件,用于指导如何收集表明BRBF系统将按预期运行的证据。然而,由于ANSI/AISC 341-16不是新西兰的管理文件,因此文件中的说明没有得到执行,可以在建筑项目的限制范围内进行。通过实例,本文介绍了三种不同商用BRB结构的试验测试过程和预鉴定测试结果。在研究的三种BRB设计中,有一种由于整体屈曲而过早失效。制造错误很可能是这次过早故障的原因。这一故障凸显了制造过程中严格质量控制的必要性。所有剩余BRB表现良好,符合ANSI/AISC 341-16中规定的验收标准。积极的资格预审结果意味着BRB安装在新西兰各地的中高层建筑中。还讨论了子装配测试对评估BRB及其框架组件性能的重要性。最后,还介绍了高保真度建模对补充物理测试的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evidence collected for peer review of buckling-restrained braced frames in New Zealand
Buckling-restrained braces (BRBs) form a bracing system that provides lateral strength and stiffness to a building. These systems have been shown to provide larger energy dissipation in severe earthquake events compared to concentrically and eccentrically braced frames (CBFs and EBFs). However, unlike CBFs and EBFs there is no guidance document or specific instructions in regulatory standards for the design of buckling-restrained braced frames (BRBFs) in New Zealand. This makes it difficult for structural engineers to be aware of all the strength and stability considerations required for the safe design of BRBFs. Currently, structural designs that include BRBFs require a peer-review to gain building compliance. The American standard ANSI/AISC 341-16 is the adopted document used in New Zealand for guidance in how to collect evidence showing a BRBF system will perform as intended. However, as ANSI/AISC 341-16 is not a governing document in New Zealand, instructions within the document are not enforced and can be made to fit within the constraints of a building project. By way of example, this paper presents the experimental test process and results acquired from pre-qualification testing of three different commercially available BRB architypes. Of the three BRB designs investigated, one failed prematurely due to global buckling. A manufacturing error was the likely cause of this premature failure. This failure highlights the need for strict quality control during fabrication. All remaining BRBs performed well, meeting the acceptance criteria set out in ANSI/AISC 341-16. Positive pre-qualification results meant the BRBs were installed in medium to high-rise buildings throughout New Zealand. The importance of sub-assemblage testing to assess the performance of a BRB and its frame components is also discussed. Finally, the capability of high fidelity modelling to supplemental physical testing is also presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
17.60%
发文量
14
期刊最新文献
Method to identify if torsional mode of a building is its first mode Earthquake design loads for retaining walls Infrastructure planning emergency levels of service for the Wellington region, Aotearoa New Zealand – An operationalised framework Seismic fragility of reinforced concrete buildings with hollow-core flooring systems Evaluation of the Inter-frequency Correlation of New Zealand CyberShake Crustal Earthquake Simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1