通过缝合比例尺法改进的长测试长度:

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION Journal of Research of the National Institute of Standards and Technology Pub Date : 2020-05-28 eCollection Date: 2020-01-01 DOI:10.6028/jres.125.017
Shendong Shi, Bala Muralikrishnan, Vincent Lee, Daniel Sawyer, Octavio Icasio-Hernández
{"title":"通过缝合比例尺法改进的长测试长度:","authors":"Shendong Shi, Bala Muralikrishnan, Vincent Lee, Daniel Sawyer, Octavio Icasio-Hernández","doi":"10.6028/jres.125.017","DOIUrl":null,"url":null,"abstract":"<p><p>Periodic performance evaluation is a critical issue for ensuring the reliability of data from terrestrial laser scanners (TLSs). With the recent introduction of the ASTM E3125-17 standard, there now exist standardized test procedures for this purpose. Point-to-point length measurement is one test method described in that documentary standard. This test is typically performed using a long scale bar (typically 2 m or longer) with spherical targets mounted on both ends. Long scale bars can become unwieldy and vary in length due to gravity loading, fixture forces, and environmental changes. In this paper, we propose a stitching scale bar (SSB) method in which a short scale bar (approximately 1 m or smaller) can provide a spatial length reference several times its length. The clear advantages of a short scale bar are that it can be calibrated in a laboratory and has potential long-term stability. An essential requirement when stitching a short scale bar is that the systematic errors in TLSs do not change significantly over short distances. We describe this requirement in this paper from both theoretical and experimental perspectives. Based on this SSB method, we evaluate the performance of a TLS according to the ASTM E3125-17 standard by stitching a 1.15 m scale bar to form a 2.3 m reference length. For comparison, a single 2.3 m scale bar is also employed for direct measurements without stitching. Experimental results show a maximum deviation of 0.072 mm in length errors between the two approaches, which is an order of magnitude smaller than typical accuracy specifications for TLSs.</p>","PeriodicalId":54766,"journal":{"name":"Journal of Research of the National Institute of Standards and Technology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2020-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10871170/pdf/","citationCount":"0","resultStr":"{\"title\":\"Improvised Long Test Lengths via Stitching Scale Bar Method: Performance Evaluation of Terrestrial Laser Scanners per ASTM E3125-17.\",\"authors\":\"Shendong Shi, Bala Muralikrishnan, Vincent Lee, Daniel Sawyer, Octavio Icasio-Hernández\",\"doi\":\"10.6028/jres.125.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Periodic performance evaluation is a critical issue for ensuring the reliability of data from terrestrial laser scanners (TLSs). With the recent introduction of the ASTM E3125-17 standard, there now exist standardized test procedures for this purpose. Point-to-point length measurement is one test method described in that documentary standard. This test is typically performed using a long scale bar (typically 2 m or longer) with spherical targets mounted on both ends. Long scale bars can become unwieldy and vary in length due to gravity loading, fixture forces, and environmental changes. In this paper, we propose a stitching scale bar (SSB) method in which a short scale bar (approximately 1 m or smaller) can provide a spatial length reference several times its length. The clear advantages of a short scale bar are that it can be calibrated in a laboratory and has potential long-term stability. An essential requirement when stitching a short scale bar is that the systematic errors in TLSs do not change significantly over short distances. We describe this requirement in this paper from both theoretical and experimental perspectives. Based on this SSB method, we evaluate the performance of a TLS according to the ASTM E3125-17 standard by stitching a 1.15 m scale bar to form a 2.3 m reference length. For comparison, a single 2.3 m scale bar is also employed for direct measurements without stitching. Experimental results show a maximum deviation of 0.072 mm in length errors between the two approaches, which is an order of magnitude smaller than typical accuracy specifications for TLSs.</p>\",\"PeriodicalId\":54766,\"journal\":{\"name\":\"Journal of Research of the National Institute of Standards and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2020-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10871170/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research of the National Institute of Standards and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.6028/jres.125.017\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Institute of Standards and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.6028/jres.125.017","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

根据国际标准组织(ISO)和美国机械工程师协会(ASME)标准的规定,激光跟踪器系统(LTSs)的性能验证通常依赖于长度为2.3m或更长的校准长度伪影。选择2.3m的长度作为将充分暴露LTS中的不准确性的最小长度。这些人工制品的实施例通常以比例尺、固定纪念碑或激光导轨的形式出现。在2014年发布的美国国家标准与技术研究院(NIST)内部报告(IR)8016中,讨论了LTS的中期测试,结果表明,具有三个间隔1.15m的嵌套的比例尺足以暴露LTS中的错误。在这种情况下,LTS相对于比例尺对称放置,从而向LTS呈现2.3m的对称长度和1.15m的不对称长度。本文将评估长度仅为1.15m的比例尺在缝合在一起以创建2.3m长的测试长度时是否能够充分暴露LTS内的错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improvised Long Test Lengths via Stitching Scale Bar Method: Performance Evaluation of Terrestrial Laser Scanners per ASTM E3125-17.

Periodic performance evaluation is a critical issue for ensuring the reliability of data from terrestrial laser scanners (TLSs). With the recent introduction of the ASTM E3125-17 standard, there now exist standardized test procedures for this purpose. Point-to-point length measurement is one test method described in that documentary standard. This test is typically performed using a long scale bar (typically 2 m or longer) with spherical targets mounted on both ends. Long scale bars can become unwieldy and vary in length due to gravity loading, fixture forces, and environmental changes. In this paper, we propose a stitching scale bar (SSB) method in which a short scale bar (approximately 1 m or smaller) can provide a spatial length reference several times its length. The clear advantages of a short scale bar are that it can be calibrated in a laboratory and has potential long-term stability. An essential requirement when stitching a short scale bar is that the systematic errors in TLSs do not change significantly over short distances. We describe this requirement in this paper from both theoretical and experimental perspectives. Based on this SSB method, we evaluate the performance of a TLS according to the ASTM E3125-17 standard by stitching a 1.15 m scale bar to form a 2.3 m reference length. For comparison, a single 2.3 m scale bar is also employed for direct measurements without stitching. Experimental results show a maximum deviation of 0.072 mm in length errors between the two approaches, which is an order of magnitude smaller than typical accuracy specifications for TLSs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
33.30%
发文量
10
审稿时长
>12 weeks
期刊介绍: The Journal of Research of the National Institute of Standards and Technology is the flagship publication of the National Institute of Standards and Technology. It has been published under various titles and forms since 1904, with its roots as Scientific Papers issued as the Bulletin of the Bureau of Standards. In 1928, the Scientific Papers were combined with Technologic Papers, which reported results of investigations of material and methods of testing. This new publication was titled the Bureau of Standards Journal of Research. The Journal of Research of NIST reports NIST research and development in metrology and related fields of physical science, engineering, applied mathematics, statistics, biotechnology, information technology.
期刊最新文献
Models for an Ultraviolet-C Research and Development Consortium. Disinfection of Respirators with Ultraviolet Radiation. Capacity Models and Transmission Risk Mitigation: An Engineering Framework to Predict the Effect of Air Disinfection by Germicidal Ultraviolet Radiation. Portable Ultraviolet-C Chambers for Inactivation of SARS-CoV-2. Calorimetry in Computed Tomography Beams.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1