基于RBF网络的数据驱动动态重构

IF 6.3 2区 物理与天体物理 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Machine Learning Science and Technology Pub Date : 2023-07-31 DOI:10.1088/2632-2153/acec31
Congcong Du, X. Wang, Zhangsen Wang, Dahui Wang
{"title":"基于RBF网络的数据驱动动态重构","authors":"Congcong Du, X. Wang, Zhangsen Wang, Dahui Wang","doi":"10.1088/2632-2153/acec31","DOIUrl":null,"url":null,"abstract":"\n Constructing the governing dynamical equations of complex systems from observational data is of great interest for both theory and applications. However, it is a difficult inverse problem to explicitly construct the dynamical equations for many real complex systems based on observational data. Here, we propose to implicitly represent the dynamical equations of a complex system using a Radial Basis Function (RBF) network trained on the observed data of the system. We show that the RBF network trained on trajectory data of the classical Lorenz and Chen system can faithfully reproduce the orbits, fixed points, and local bifurcations of the original dynamical equations. We also apply this method to electrocardiogram (ECG) data and show that the fixed points of the RBF network trained using ECG can discriminate healthy people from patients with heart disease, indicating that the method can be applied to real complex systems","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":"1 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven Dynamics Reconstruction using RBF Network\",\"authors\":\"Congcong Du, X. Wang, Zhangsen Wang, Dahui Wang\",\"doi\":\"10.1088/2632-2153/acec31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Constructing the governing dynamical equations of complex systems from observational data is of great interest for both theory and applications. However, it is a difficult inverse problem to explicitly construct the dynamical equations for many real complex systems based on observational data. Here, we propose to implicitly represent the dynamical equations of a complex system using a Radial Basis Function (RBF) network trained on the observed data of the system. We show that the RBF network trained on trajectory data of the classical Lorenz and Chen system can faithfully reproduce the orbits, fixed points, and local bifurcations of the original dynamical equations. We also apply this method to electrocardiogram (ECG) data and show that the fixed points of the RBF network trained using ECG can discriminate healthy people from patients with heart disease, indicating that the method can be applied to real complex systems\",\"PeriodicalId\":33757,\"journal\":{\"name\":\"Machine Learning Science and Technology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-2153/acec31\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2632-2153/acec31","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

利用观测数据建立复杂系统的控制动力学方程具有重要的理论意义和应用价值。然而,基于观测数据显式构造许多真实复杂系统的动力学方程是一个困难的反问题。在这里,我们建议使用在系统观测数据上训练的径向基函数(RBF)网络来隐式表示复杂系统的动力学方程。我们证明了在经典Lorenz和Chen系统的轨迹数据上训练的RBF网络可以忠实地再现原始动力学方程的轨道、不动点和局部分叉。我们还将该方法应用于心电图数据,并表明使用心电图训练的RBF网络的不动点可以区分健康人和心脏病患者,表明该方法可以应用于真实的复杂系统
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data-driven Dynamics Reconstruction using RBF Network
Constructing the governing dynamical equations of complex systems from observational data is of great interest for both theory and applications. However, it is a difficult inverse problem to explicitly construct the dynamical equations for many real complex systems based on observational data. Here, we propose to implicitly represent the dynamical equations of a complex system using a Radial Basis Function (RBF) network trained on the observed data of the system. We show that the RBF network trained on trajectory data of the classical Lorenz and Chen system can faithfully reproduce the orbits, fixed points, and local bifurcations of the original dynamical equations. We also apply this method to electrocardiogram (ECG) data and show that the fixed points of the RBF network trained using ECG can discriminate healthy people from patients with heart disease, indicating that the method can be applied to real complex systems
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine Learning Science and Technology
Machine Learning Science and Technology Computer Science-Artificial Intelligence
CiteScore
9.10
自引率
4.40%
发文量
86
审稿时长
5 weeks
期刊介绍: Machine Learning Science and Technology is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories: advance the state of machine learning-driven applications in the sciences or make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.
期刊最新文献
Quality assurance for online adaptive radiotherapy: a secondary dose verification model with geometry-encoded U-Net. Optimizing ZX-diagrams with deep reinforcement learning DiffLense: a conditional diffusion model for super-resolution of gravitational lensing data Equivariant tensor network potentials Masked particle modeling on sets: towards self-supervised high energy physics foundation models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1