{"title":"人口易受自然和人为灾害影响程度的时间变异性评估(以莫斯科地区为例)","authors":"R. Babkin, S. Badina, Alexander N. Bereznyatsky","doi":"10.24057/2071-9388-2022-116","DOIUrl":null,"url":null,"abstract":"The relevance of the study lies in the need for a scientific search for the possibilities of using new types of Big data in studies of the population vulnerability to solve practical problems of improving the safety of urban spaces from natural and man-made hazards. The object of the study is the administrative districts of Moscow; the subject is the temporal patterns of vulnerability of their population to potential natural and man-made hazards. The research question of the study is to develop a typology of Moscow districts and further assess this sustainability in terms of the population vulnerability to natural and man-made hazards. To achieve this research question, a set of tasks was solved: 1. Processing of the mobile operators’ data array and further construction of a continuous graph of the Moscow population dynamics in 2019 (with a time cycle of 30 minutes, over 36 million measurements in more than 7 thousand time slices); 2. Empirical justification of natural temporal boundaries of daily, weekly, seasonal cycles of population dynamics in Moscow districts; 3. Justification of key factors and parameters of urban population vulnerability; 4. Development and approbation of the dynamic clustering method of Moscow districts using selected variables and periods. The study is based on the impersonal mobile operators’ data on the locations of subscribers for 2019, provided by the Department of Information Technologies of the Moscow city. The method of dynamic cluster analysis is used. Four particular clusterings were obtained that characterize the “behavior” of the settlement system in the main intervals of social time (weekdays and weekends of the cold and warm seasons). Сluster stability matrix allows to identify which of the districts retain their properties during the period under review, and which are characterized by instability of considered indicators of population vulnerability. Depending on the stability of the position of the districts in a particular cluster, “stable”, “conditionally stable” and “nomadic” types of districts were identified. The study showed that the first two types include spatial-settlement structures that are stable in time with approximately the same level of population vulnerability during the year, while the third type requires a special differentiated approach to the development of measures to protect the population from natural and man-made emergencies. Calculations have shown that “nomadic” type of districts concentrate on average from 2.2 million people in the summer season to 3 million people in the winter season, that is, a very significant share of the entire population of the capital.","PeriodicalId":37517,"journal":{"name":"Geography, Environment, Sustainability","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment Of Temporal Variability In The Level Of Population Vulnerability To Natural And Man-Made Hazards (The Case Of Moscow Districts)\",\"authors\":\"R. Babkin, S. Badina, Alexander N. Bereznyatsky\",\"doi\":\"10.24057/2071-9388-2022-116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The relevance of the study lies in the need for a scientific search for the possibilities of using new types of Big data in studies of the population vulnerability to solve practical problems of improving the safety of urban spaces from natural and man-made hazards. The object of the study is the administrative districts of Moscow; the subject is the temporal patterns of vulnerability of their population to potential natural and man-made hazards. The research question of the study is to develop a typology of Moscow districts and further assess this sustainability in terms of the population vulnerability to natural and man-made hazards. To achieve this research question, a set of tasks was solved: 1. Processing of the mobile operators’ data array and further construction of a continuous graph of the Moscow population dynamics in 2019 (with a time cycle of 30 minutes, over 36 million measurements in more than 7 thousand time slices); 2. Empirical justification of natural temporal boundaries of daily, weekly, seasonal cycles of population dynamics in Moscow districts; 3. Justification of key factors and parameters of urban population vulnerability; 4. Development and approbation of the dynamic clustering method of Moscow districts using selected variables and periods. The study is based on the impersonal mobile operators’ data on the locations of subscribers for 2019, provided by the Department of Information Technologies of the Moscow city. The method of dynamic cluster analysis is used. Four particular clusterings were obtained that characterize the “behavior” of the settlement system in the main intervals of social time (weekdays and weekends of the cold and warm seasons). Сluster stability matrix allows to identify which of the districts retain their properties during the period under review, and which are characterized by instability of considered indicators of population vulnerability. Depending on the stability of the position of the districts in a particular cluster, “stable”, “conditionally stable” and “nomadic” types of districts were identified. The study showed that the first two types include spatial-settlement structures that are stable in time with approximately the same level of population vulnerability during the year, while the third type requires a special differentiated approach to the development of measures to protect the population from natural and man-made emergencies. Calculations have shown that “nomadic” type of districts concentrate on average from 2.2 million people in the summer season to 3 million people in the winter season, that is, a very significant share of the entire population of the capital.\",\"PeriodicalId\":37517,\"journal\":{\"name\":\"Geography, Environment, Sustainability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geography, Environment, Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24057/2071-9388-2022-116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geography, Environment, Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24057/2071-9388-2022-116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Assessment Of Temporal Variability In The Level Of Population Vulnerability To Natural And Man-Made Hazards (The Case Of Moscow Districts)
The relevance of the study lies in the need for a scientific search for the possibilities of using new types of Big data in studies of the population vulnerability to solve practical problems of improving the safety of urban spaces from natural and man-made hazards. The object of the study is the administrative districts of Moscow; the subject is the temporal patterns of vulnerability of their population to potential natural and man-made hazards. The research question of the study is to develop a typology of Moscow districts and further assess this sustainability in terms of the population vulnerability to natural and man-made hazards. To achieve this research question, a set of tasks was solved: 1. Processing of the mobile operators’ data array and further construction of a continuous graph of the Moscow population dynamics in 2019 (with a time cycle of 30 minutes, over 36 million measurements in more than 7 thousand time slices); 2. Empirical justification of natural temporal boundaries of daily, weekly, seasonal cycles of population dynamics in Moscow districts; 3. Justification of key factors and parameters of urban population vulnerability; 4. Development and approbation of the dynamic clustering method of Moscow districts using selected variables and periods. The study is based on the impersonal mobile operators’ data on the locations of subscribers for 2019, provided by the Department of Information Technologies of the Moscow city. The method of dynamic cluster analysis is used. Four particular clusterings were obtained that characterize the “behavior” of the settlement system in the main intervals of social time (weekdays and weekends of the cold and warm seasons). Сluster stability matrix allows to identify which of the districts retain their properties during the period under review, and which are characterized by instability of considered indicators of population vulnerability. Depending on the stability of the position of the districts in a particular cluster, “stable”, “conditionally stable” and “nomadic” types of districts were identified. The study showed that the first two types include spatial-settlement structures that are stable in time with approximately the same level of population vulnerability during the year, while the third type requires a special differentiated approach to the development of measures to protect the population from natural and man-made emergencies. Calculations have shown that “nomadic” type of districts concentrate on average from 2.2 million people in the summer season to 3 million people in the winter season, that is, a very significant share of the entire population of the capital.
期刊介绍:
Journal “GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY” is founded by the Faculty of Geography of Lomonosov Moscow State University, The Russian Geographical Society and by the Institute of Geography of RAS. It is the official journal of Russian Geographical Society, and a fully open access journal. Journal “GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY” publishes original, innovative, interdisciplinary and timely research letter articles and concise reviews on studies of the Earth and its environment scientific field. This goal covers a broad spectrum of scientific research areas (physical-, social-, economic-, cultural geography, environmental sciences and sustainable development) and also considers contemporary and widely used research methods, such as geoinformatics, cartography, remote sensing (including from space), geophysics, geochemistry, etc. “GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY” is the only original English-language journal in the field of geography and environmental sciences published in Russia. It is supposed to be an outlet from the Russian-speaking countries to Europe and an inlet from Europe to the Russian-speaking countries regarding environmental and Earth sciences, geography and sustainability. The main sections of the journal are the theory of geography and ecology, the theory of sustainable development, use of natural resources, natural resources assessment, global and regional changes of environment and climate, social-economical geography, ecological regional planning, sustainable regional development, applied aspects of geography and ecology, geoinformatics and ecological cartography, ecological problems of oil and gas sector, nature conservations, health and environment, and education for sustainable development. Articles are freely available to both subscribers and the wider public with permitted reuse.