{"title":"用于缓解南部非洲城市热岛的浅色混凝土路面","authors":"T. P. Mlilwana, E. Kearsley","doi":"10.17159/2309-8775/2022/v64no2a1","DOIUrl":null,"url":null,"abstract":"Global population growth and rapid urbanisation have resulted in the rapid transformation of natural topographies that are now dominated by engineering materials and structures. It is widely recognised that economic development is largely attributable to infrastructure development. However, this development has come about with adverse consequences. In this paper, the effects of surface characteristics, climatic parameters and material properties on the thermal environment and near-surface heat islands in urban areas were investigated. An experiment was conducted in which simple concrete structures with varying surface characteristics were constructed and instrumented. The effect of solar absorptivity was clearly visible, with structures surfaced with low absorptivity materials exhibiting lower surface and effective temperatures. Following the experimental programme, numerical simulations of the simple concrete structures were performed using finite element modelling. The analyses showed that the thermal environment of concrete structures is sensitive to changes in solar absorptivity, climatic parameters, cross-sectional dimensions, and material properties. It was found that the use of low absorptivity or highly reflective surfacing and the selection of appropriate dimensions can be used to significantly reduce the temperatures of concrete infrastructure, including buildings and pavements, thereby providing an evidential basis for the use of low absorptivity surfacing materials to mitigate climate change in Southern Africa.","PeriodicalId":54762,"journal":{"name":"Journal of the South African Institution of Civil Engineering","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Light-coloured concrete surfacing for urban heat-island mitigation in Southern Africa\",\"authors\":\"T. P. Mlilwana, E. Kearsley\",\"doi\":\"10.17159/2309-8775/2022/v64no2a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Global population growth and rapid urbanisation have resulted in the rapid transformation of natural topographies that are now dominated by engineering materials and structures. It is widely recognised that economic development is largely attributable to infrastructure development. However, this development has come about with adverse consequences. In this paper, the effects of surface characteristics, climatic parameters and material properties on the thermal environment and near-surface heat islands in urban areas were investigated. An experiment was conducted in which simple concrete structures with varying surface characteristics were constructed and instrumented. The effect of solar absorptivity was clearly visible, with structures surfaced with low absorptivity materials exhibiting lower surface and effective temperatures. Following the experimental programme, numerical simulations of the simple concrete structures were performed using finite element modelling. The analyses showed that the thermal environment of concrete structures is sensitive to changes in solar absorptivity, climatic parameters, cross-sectional dimensions, and material properties. It was found that the use of low absorptivity or highly reflective surfacing and the selection of appropriate dimensions can be used to significantly reduce the temperatures of concrete infrastructure, including buildings and pavements, thereby providing an evidential basis for the use of low absorptivity surfacing materials to mitigate climate change in Southern Africa.\",\"PeriodicalId\":54762,\"journal\":{\"name\":\"Journal of the South African Institution of Civil Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the South African Institution of Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.17159/2309-8775/2022/v64no2a1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the South African Institution of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.17159/2309-8775/2022/v64no2a1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Light-coloured concrete surfacing for urban heat-island mitigation in Southern Africa
Global population growth and rapid urbanisation have resulted in the rapid transformation of natural topographies that are now dominated by engineering materials and structures. It is widely recognised that economic development is largely attributable to infrastructure development. However, this development has come about with adverse consequences. In this paper, the effects of surface characteristics, climatic parameters and material properties on the thermal environment and near-surface heat islands in urban areas were investigated. An experiment was conducted in which simple concrete structures with varying surface characteristics were constructed and instrumented. The effect of solar absorptivity was clearly visible, with structures surfaced with low absorptivity materials exhibiting lower surface and effective temperatures. Following the experimental programme, numerical simulations of the simple concrete structures were performed using finite element modelling. The analyses showed that the thermal environment of concrete structures is sensitive to changes in solar absorptivity, climatic parameters, cross-sectional dimensions, and material properties. It was found that the use of low absorptivity or highly reflective surfacing and the selection of appropriate dimensions can be used to significantly reduce the temperatures of concrete infrastructure, including buildings and pavements, thereby providing an evidential basis for the use of low absorptivity surfacing materials to mitigate climate change in Southern Africa.
期刊介绍:
The Journal of the South African Institution of Civil Engineering publishes peer reviewed papers on all aspects of Civil Engineering relevant to Africa. It is an open access, ISI accredited journal, providing authoritative information not only on current developments, but also – through its back issues – giving access to data on established practices and the construction of existing infrastructure. It is published quarterly and is controlled by a Journal Editorial Panel.
The forerunner of the South African Institution of Civil Engineering was established in 1903 as a learned society aiming to develop technology and to share knowledge for the development of the day. The minutes of the proceedings of the then Cape Society of Civil Engineers mainly contained technical papers presented at the Society''s meetings. Since then, and throughout its long history, during which time it has undergone several name changes, the organisation has continued to publish technical papers in its monthly publication (magazine), until 1993 when it created a separate journal for the publication of technical papers.