Pinpin Qin, Fumao Wu, Shenglin Bin, Xing Li, Fuming Ya
{"title":"基于TD3的宽窄路段高精度、高效率、舒适跟车策略","authors":"Pinpin Qin, Fumao Wu, Shenglin Bin, Xing Li, Fuming Ya","doi":"10.3390/wevj14090244","DOIUrl":null,"url":null,"abstract":"To address traffic congestion in urban expressways during the transition from wide to narrow sections, this study proposed a car-following strategy based on deep reinforcement learning. Firstly, a car-following strategy was developed based on a twin-delayed deep deterministic policy gradient (TD3) algorithm, and a multi-objective constrained reward function was designed by comprehensively considering safety, traffic efficiency, and ride comfort. Secondly, 214 car-following periods and 13 platoon-following periods were selected from the natural driving database for the strategies training and testing. Finally, the effectiveness of the proposed strategy was verified through simulation experiments of car-following and platoon-following. The results showed that compared to human-driven vehicles (HDV), the TD3 and deep deterministic policy gradient (DDPG)-based strategies enhanced traffic efficiency by over 29% and ride comfort by more than 60%. Furthermore, compared to DDPG, the relative errors between the following distance and desired safety distance using TD3 could be reduced by 1.28% and 1.37% in simulation experiments of car-following and platoon-following, respectively. This study provides a new approach to alleviate traffic congestion for wide-to-narrow road sections in urban expressways.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Accuracy, High-Efficiency, and Comfortable Car-Following Strategy Based on TD3 for Wide-to-Narrow Road Sections\",\"authors\":\"Pinpin Qin, Fumao Wu, Shenglin Bin, Xing Li, Fuming Ya\",\"doi\":\"10.3390/wevj14090244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address traffic congestion in urban expressways during the transition from wide to narrow sections, this study proposed a car-following strategy based on deep reinforcement learning. Firstly, a car-following strategy was developed based on a twin-delayed deep deterministic policy gradient (TD3) algorithm, and a multi-objective constrained reward function was designed by comprehensively considering safety, traffic efficiency, and ride comfort. Secondly, 214 car-following periods and 13 platoon-following periods were selected from the natural driving database for the strategies training and testing. Finally, the effectiveness of the proposed strategy was verified through simulation experiments of car-following and platoon-following. The results showed that compared to human-driven vehicles (HDV), the TD3 and deep deterministic policy gradient (DDPG)-based strategies enhanced traffic efficiency by over 29% and ride comfort by more than 60%. Furthermore, compared to DDPG, the relative errors between the following distance and desired safety distance using TD3 could be reduced by 1.28% and 1.37% in simulation experiments of car-following and platoon-following, respectively. This study provides a new approach to alleviate traffic congestion for wide-to-narrow road sections in urban expressways.\",\"PeriodicalId\":38979,\"journal\":{\"name\":\"World Electric Vehicle Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Electric Vehicle Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/wevj14090244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Electric Vehicle Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/wevj14090244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
High-Accuracy, High-Efficiency, and Comfortable Car-Following Strategy Based on TD3 for Wide-to-Narrow Road Sections
To address traffic congestion in urban expressways during the transition from wide to narrow sections, this study proposed a car-following strategy based on deep reinforcement learning. Firstly, a car-following strategy was developed based on a twin-delayed deep deterministic policy gradient (TD3) algorithm, and a multi-objective constrained reward function was designed by comprehensively considering safety, traffic efficiency, and ride comfort. Secondly, 214 car-following periods and 13 platoon-following periods were selected from the natural driving database for the strategies training and testing. Finally, the effectiveness of the proposed strategy was verified through simulation experiments of car-following and platoon-following. The results showed that compared to human-driven vehicles (HDV), the TD3 and deep deterministic policy gradient (DDPG)-based strategies enhanced traffic efficiency by over 29% and ride comfort by more than 60%. Furthermore, compared to DDPG, the relative errors between the following distance and desired safety distance using TD3 could be reduced by 1.28% and 1.37% in simulation experiments of car-following and platoon-following, respectively. This study provides a new approach to alleviate traffic congestion for wide-to-narrow road sections in urban expressways.