David Batet, F. Vilaseca, E. Ramón, J. Esquivel, G. Gabriel
{"title":"绿色印刷电子产品的实验综述:油墨、基板和印刷技术","authors":"David Batet, F. Vilaseca, E. Ramón, J. Esquivel, G. Gabriel","doi":"10.1088/2058-8585/acd8cc","DOIUrl":null,"url":null,"abstract":"The selection of materials and technologies for green printed electronics design is a fundamental and time-consuming task. This paper represents a rigorous experimental overview in which different printing technologies, ink formulations, and paper-based substrates are examined and analyzed. Three printing techniques are investigated: inkjet printing, screen printing, and direct ink writing. Regarding the inks, formulations based on carbon and silver have been chosen as conductive materials. Initially, the electrical properties of the selected inks have been characterized on a conventional substrate in printed electronics such as polyethylene terephthalate. Later, the printing conditions are optimized for various paper-based substrates, including commercial papers and substrates based on cellulose nanofibers (CNF). CNF are also used as a coating for commercial papers and their influence on the printing quality is evaluated. The substrates are also characterized in terms of morphology, wettability, and thermal stability. This study facilitates the benchmarking tasks for researchers developing new devices and contributes toward the eco-design of flexible green printed electronics.","PeriodicalId":51335,"journal":{"name":"Flexible and Printed Electronics","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Experimental overview for green printed electronics: inks, substrates, and printing techniques\",\"authors\":\"David Batet, F. Vilaseca, E. Ramón, J. Esquivel, G. Gabriel\",\"doi\":\"10.1088/2058-8585/acd8cc\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The selection of materials and technologies for green printed electronics design is a fundamental and time-consuming task. This paper represents a rigorous experimental overview in which different printing technologies, ink formulations, and paper-based substrates are examined and analyzed. Three printing techniques are investigated: inkjet printing, screen printing, and direct ink writing. Regarding the inks, formulations based on carbon and silver have been chosen as conductive materials. Initially, the electrical properties of the selected inks have been characterized on a conventional substrate in printed electronics such as polyethylene terephthalate. Later, the printing conditions are optimized for various paper-based substrates, including commercial papers and substrates based on cellulose nanofibers (CNF). CNF are also used as a coating for commercial papers and their influence on the printing quality is evaluated. The substrates are also characterized in terms of morphology, wettability, and thermal stability. This study facilitates the benchmarking tasks for researchers developing new devices and contributes toward the eco-design of flexible green printed electronics.\",\"PeriodicalId\":51335,\"journal\":{\"name\":\"Flexible and Printed Electronics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flexible and Printed Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-8585/acd8cc\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flexible and Printed Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2058-8585/acd8cc","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Experimental overview for green printed electronics: inks, substrates, and printing techniques
The selection of materials and technologies for green printed electronics design is a fundamental and time-consuming task. This paper represents a rigorous experimental overview in which different printing technologies, ink formulations, and paper-based substrates are examined and analyzed. Three printing techniques are investigated: inkjet printing, screen printing, and direct ink writing. Regarding the inks, formulations based on carbon and silver have been chosen as conductive materials. Initially, the electrical properties of the selected inks have been characterized on a conventional substrate in printed electronics such as polyethylene terephthalate. Later, the printing conditions are optimized for various paper-based substrates, including commercial papers and substrates based on cellulose nanofibers (CNF). CNF are also used as a coating for commercial papers and their influence on the printing quality is evaluated. The substrates are also characterized in terms of morphology, wettability, and thermal stability. This study facilitates the benchmarking tasks for researchers developing new devices and contributes toward the eco-design of flexible green printed electronics.
期刊介绍:
Flexible and Printed Electronics is a multidisciplinary journal publishing cutting edge research articles on electronics that can be either flexible, plastic, stretchable, conformable or printed. Research related to electronic materials, manufacturing techniques, components or systems which meets any one (or more) of the above criteria is suitable for publication in the journal. Subjects included in the journal range from flexible materials and printing techniques, design or modelling of electrical systems and components, advanced fabrication methods and bioelectronics, to the properties of devices and end user applications.