Squatbar®与奥林匹克杠铃的生物力学比较

Hallvard Nygaard Falch, E. Kristiansen, R. van den Tillaar
{"title":"Squatbar®与奥林匹克杠铃的生物力学比较","authors":"Hallvard Nygaard Falch, E. Kristiansen, R. van den Tillaar","doi":"10.3390/biomechanics3020022","DOIUrl":null,"url":null,"abstract":"When performing the traditional barbell back squat, athletes may experience discomfort in the shoulders or be limited by shoulder mobility. The Squatbar® is a barbell designed to be ergonomic to the shoulders but has never, in the scientific literature, been compared to the traditional Olympic barbell. Thus, the current study investigated kinematics, kinetics, and myoelectric activity (EMG) between the Squatbar® barbell and the Olympic barbell when performing a one-repetition maximum (1-RM) back squat. Twelve strength-trained men (body mass: 83.5 ± 7.8 kg, age: 27.3 ± 3.8 years, height: 180.3 ± 6.7 cm) performed a 1-RM squat with both the Olympic and Squatbar® barbells. The paired samples t-test revealed significantly more weight was lifted with the Olympic barbell compared to the Squatbar® barbell (148 ± 21 kg vs. 144.5 ± 20 kg) and was accompanied by greater shoulder external rotation (74 ± 7.5° vs. 59.6 ± 9.2°). No differences in joint kinematics of the lower limbs, kinetics, or EMG were observed between the two barbells. The results of the current study indicate the Squatbar® to be a suitable substitution for the Olympic barbell for athletes with reduced shoulder mobility when performing the squat. It was concluded that the Squatbar® induces similar kinetics, kinematics, and EMG when compared to the Olympic barbell, except for reducing external rotation of the shoulder.","PeriodicalId":72381,"journal":{"name":"Biomechanics (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Biomechanical Comparison between Squatbar® and Olympic Barbell\",\"authors\":\"Hallvard Nygaard Falch, E. Kristiansen, R. van den Tillaar\",\"doi\":\"10.3390/biomechanics3020022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When performing the traditional barbell back squat, athletes may experience discomfort in the shoulders or be limited by shoulder mobility. The Squatbar® is a barbell designed to be ergonomic to the shoulders but has never, in the scientific literature, been compared to the traditional Olympic barbell. Thus, the current study investigated kinematics, kinetics, and myoelectric activity (EMG) between the Squatbar® barbell and the Olympic barbell when performing a one-repetition maximum (1-RM) back squat. Twelve strength-trained men (body mass: 83.5 ± 7.8 kg, age: 27.3 ± 3.8 years, height: 180.3 ± 6.7 cm) performed a 1-RM squat with both the Olympic and Squatbar® barbells. The paired samples t-test revealed significantly more weight was lifted with the Olympic barbell compared to the Squatbar® barbell (148 ± 21 kg vs. 144.5 ± 20 kg) and was accompanied by greater shoulder external rotation (74 ± 7.5° vs. 59.6 ± 9.2°). No differences in joint kinematics of the lower limbs, kinetics, or EMG were observed between the two barbells. The results of the current study indicate the Squatbar® to be a suitable substitution for the Olympic barbell for athletes with reduced shoulder mobility when performing the squat. It was concluded that the Squatbar® induces similar kinetics, kinematics, and EMG when compared to the Olympic barbell, except for reducing external rotation of the shoulder.\",\"PeriodicalId\":72381,\"journal\":{\"name\":\"Biomechanics (Basel, Switzerland)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomechanics (Basel, Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/biomechanics3020022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biomechanics3020022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在进行传统的杠铃后蹲时,运动员可能会感到肩部不适或肩部活动受限。Squatbar®是一种肩部符合人体工程学的杠铃,但在科学文献中从未被拿来与传统的奥运会杠铃相比较。因此,目前的研究调查了Squatbar®杠铃和奥运会杠铃在进行一次重复最大(1-RM)后蹲时的运动学、动力学和肌电活动(EMG)。12名受过力量训练的男子(体重:83.5±7.8公斤,年龄:27.3±3.8 年,身高:180.3±6.7厘米)用奥林匹克杠铃和Squatbar®杠铃进行了1米深蹲。配对样本t检验显示,与Squatbar®杠铃相比,奥林匹克杠铃的举重量显著增加(148±21 kg vs.144.5±20 kg),并伴有更大的肩部外旋(74±7.5°vs.59.6±9.2°)。两个杠铃在下肢关节运动学、动力学或肌电图方面没有观察到差异。目前的研究结果表明,对于肩部活动能力下降的运动员来说,Squatbar®是奥运会杠铃的合适替代品。得出的结论是,与奥运会杠铃相比,Squatbar®可诱导类似的动力学、运动学和肌电图,只是减少了肩部的外部旋转。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Biomechanical Comparison between Squatbar® and Olympic Barbell
When performing the traditional barbell back squat, athletes may experience discomfort in the shoulders or be limited by shoulder mobility. The Squatbar® is a barbell designed to be ergonomic to the shoulders but has never, in the scientific literature, been compared to the traditional Olympic barbell. Thus, the current study investigated kinematics, kinetics, and myoelectric activity (EMG) between the Squatbar® barbell and the Olympic barbell when performing a one-repetition maximum (1-RM) back squat. Twelve strength-trained men (body mass: 83.5 ± 7.8 kg, age: 27.3 ± 3.8 years, height: 180.3 ± 6.7 cm) performed a 1-RM squat with both the Olympic and Squatbar® barbells. The paired samples t-test revealed significantly more weight was lifted with the Olympic barbell compared to the Squatbar® barbell (148 ± 21 kg vs. 144.5 ± 20 kg) and was accompanied by greater shoulder external rotation (74 ± 7.5° vs. 59.6 ± 9.2°). No differences in joint kinematics of the lower limbs, kinetics, or EMG were observed between the two barbells. The results of the current study indicate the Squatbar® to be a suitable substitution for the Olympic barbell for athletes with reduced shoulder mobility when performing the squat. It was concluded that the Squatbar® induces similar kinetics, kinematics, and EMG when compared to the Olympic barbell, except for reducing external rotation of the shoulder.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
期刊最新文献
Effects of Aging on Patellofemoral Joint Stress during Stair Negotiation on Challenging Surfaces. Definition of a Global Coordinate System in the Foot for the Surgical Planning of Forefoot Corrections Postural Control Behavior in a Virtual Moving Room Paradigm Patient-Specific 3D Virtual Surgical Planning Using Simulated Fluoroscopic Images to Improve Sacroiliac Joint Fusion Optimization of a Cost-Constrained, Hydraulic Knee Prosthesis Using a Kinematic Analysis Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1