PLS‐SEM:面向人力资源开发研究人员的预测解决方案

IF 4 3区 管理学 Q1 INDUSTRIAL RELATIONS & LABOR Human Resource Development Quarterly Pub Date : 2021-11-25 DOI:10.1002/hrdq.21466
Amanda E. Legate, Joe F. Hair Jr, Janice Lambert Chretien, Jeffrey J. Risher
{"title":"PLS‐SEM:面向人力资源开发研究人员的预测解决方案","authors":"Amanda E. Legate,&nbsp;Joe F. Hair Jr,&nbsp;Janice Lambert Chretien,&nbsp;Jeffrey J. Risher","doi":"10.1002/hrdq.21466","DOIUrl":null,"url":null,"abstract":"<p>Structural equation modeling, often referred to as SEM, is a well-established, covariance-based multivariate method used in Human Resource Development (HRD) quantitative research. In some research contexts, however, the rigorous assumptions associated with covariance-based SEM (CB-SEM) limit applications of the method. An emergent complementary SEM approach, partial least squares structural equation modeling (PLS-SEM), is a variance-based SEM method that provides valid solutions and overcomes several limitations associated with CB-SEM. Despite PLS-SEM's increasing popularity in many social sciences disciplines, the method has yet to gain traction in the field of HRD. An accessible overview of the method, including potential advantages for HRD research and extant methodological advancements, is provided in this article with the goal of encouraging productive dialogue in the field of HRD surrounding the PLS-SEM approach. We present an emergent analytical tool for quantitative HRD research, offer practical guidelines for researchers to consider when selecting a SEM method, and clarify assessment stages and up-to-date evaluation criteria through an illustrative example.</p>","PeriodicalId":47803,"journal":{"name":"Human Resource Development Quarterly","volume":"34 1","pages":"91-109"},"PeriodicalIF":4.0000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"PLS-SEM: Prediction-oriented solutions for HRD researchers\",\"authors\":\"Amanda E. Legate,&nbsp;Joe F. Hair Jr,&nbsp;Janice Lambert Chretien,&nbsp;Jeffrey J. Risher\",\"doi\":\"10.1002/hrdq.21466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Structural equation modeling, often referred to as SEM, is a well-established, covariance-based multivariate method used in Human Resource Development (HRD) quantitative research. In some research contexts, however, the rigorous assumptions associated with covariance-based SEM (CB-SEM) limit applications of the method. An emergent complementary SEM approach, partial least squares structural equation modeling (PLS-SEM), is a variance-based SEM method that provides valid solutions and overcomes several limitations associated with CB-SEM. Despite PLS-SEM's increasing popularity in many social sciences disciplines, the method has yet to gain traction in the field of HRD. An accessible overview of the method, including potential advantages for HRD research and extant methodological advancements, is provided in this article with the goal of encouraging productive dialogue in the field of HRD surrounding the PLS-SEM approach. We present an emergent analytical tool for quantitative HRD research, offer practical guidelines for researchers to consider when selecting a SEM method, and clarify assessment stages and up-to-date evaluation criteria through an illustrative example.</p>\",\"PeriodicalId\":47803,\"journal\":{\"name\":\"Human Resource Development Quarterly\",\"volume\":\"34 1\",\"pages\":\"91-109\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2021-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Resource Development Quarterly\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hrdq.21466\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INDUSTRIAL RELATIONS & LABOR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Resource Development Quarterly","FirstCategoryId":"91","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hrdq.21466","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INDUSTRIAL RELATIONS & LABOR","Score":null,"Total":0}
引用次数: 35

摘要

结构方程模型,通常被称为SEM,是一种完善的、基于协方差的多变量方法,用于人力资源开发(HRD)定量研究。然而,在某些研究背景下,与基于协方差的扫描电镜(CB-SEM)相关的严格假设限制了该方法的应用。一种新兴的互补SEM方法,偏最小二乘结构方程建模(PLS-SEM),是一种基于方差的SEM方法,它提供了有效的解决方案,并克服了与CB-SEM相关的几个限制。尽管PLS-SEM在许多社会科学学科中越来越受欢迎,但该方法尚未在人力资源开发领域获得关注。本文提供了该方法的概览,包括人力资源开发研究的潜在优势和现有方法的进步,目的是鼓励围绕PLS-SEM方法在人力资源开发领域进行富有成效的对话。我们提出了一种用于定量人力资源开发研究的新兴分析工具,为研究人员在选择扫描电镜方法时提供了实用指南,并通过举例说明阐明了评估阶段和最新的评估标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PLS-SEM: Prediction-oriented solutions for HRD researchers

Structural equation modeling, often referred to as SEM, is a well-established, covariance-based multivariate method used in Human Resource Development (HRD) quantitative research. In some research contexts, however, the rigorous assumptions associated with covariance-based SEM (CB-SEM) limit applications of the method. An emergent complementary SEM approach, partial least squares structural equation modeling (PLS-SEM), is a variance-based SEM method that provides valid solutions and overcomes several limitations associated with CB-SEM. Despite PLS-SEM's increasing popularity in many social sciences disciplines, the method has yet to gain traction in the field of HRD. An accessible overview of the method, including potential advantages for HRD research and extant methodological advancements, is provided in this article with the goal of encouraging productive dialogue in the field of HRD surrounding the PLS-SEM approach. We present an emergent analytical tool for quantitative HRD research, offer practical guidelines for researchers to consider when selecting a SEM method, and clarify assessment stages and up-to-date evaluation criteria through an illustrative example.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
CiteScore
7.60
自引率
6.10%
发文量
19
期刊介绍: Human Resource Development Quarterly (HRDQ) is the first scholarly journal focused directly on the evolving field of human resource development (HRD). It provides a central focus for research on human resource development issues as well as the means for disseminating such research. HRDQ recognizes the interdisciplinary nature of the HRD field and brings together relevant research from the related fields, such as economics, education, management, sociology, and psychology. It provides an important link in the application of theory and research to HRD practice. HRDQ publishes scholarly work that addresses the theoretical foundations of HRD, HRD research, and evaluation of HRD interventions and contexts.
期刊最新文献
Issue Information Information for Contributors Shaping the Future of HRDQ: Embracing Growth, Innovation, and Scholarly Rigor Issue Information Information for Contributors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1