靶向保守表面多糖的抗体对产生β-1-6-连接聚-N-乙酰葡糖胺(PNAG)的多种微生物病原体具有保护作用

IF 10.1 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Engineering Pub Date : 2024-07-01 DOI:10.1016/j.eng.2023.09.012
{"title":"靶向保守表面多糖的抗体对产生β-1-6-连接聚-N-乙酰葡糖胺(PNAG)的多种微生物病原体具有保护作用","authors":"","doi":"10.1016/j.eng.2023.09.012","DOIUrl":null,"url":null,"abstract":"<div><p>The β-1–6-linked poly-<em>N</em>-acetylglucosamine (PNAG) polymer is a conserved surface polysaccharide produced by many bacteria, fungi, and protozoan (and even filarial) parasites. This wide-ranging expression makes PNAG an attractive target for vaccine development, as it potentially encompasses a broad range of microorganisms. Significant progress has been made in discovering important properties of the biology of PNAG expression in recent years. The molecular characterization and regulation of operons for the production of PNAG biosynthetic proteins and enzymes have been studied in many bacteria. In addition, the physiological function of PNAG has been further elucidated. PNAG-based vaccines and PNAG-targeting antibodies have shown great efficacy in preclinical research. Furthermore, clinical tests for both vaccines and antibodies have been carried out in humans and economically important animals, and the results are promising. Although it is not destined to be a smooth road, we are optimistic about new vaccines and immunotherapeutics targeting PNAG becoming validated and eventually licensed for clinical use against multiple infectious agents.</p></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":null,"pages":null},"PeriodicalIF":10.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095809923004228/pdfft?md5=4893878e85cad224ab8302cc65721ad3&pid=1-s2.0-S2095809923004228-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Antibodies Targeting a Conserved Surface Polysaccharide Are Protective Against a Wide Range of Microbial Pathogens Producing β-1–6-Linked Poly-N-Acetylglucosamine (PNAG)\",\"authors\":\"\",\"doi\":\"10.1016/j.eng.2023.09.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The β-1–6-linked poly-<em>N</em>-acetylglucosamine (PNAG) polymer is a conserved surface polysaccharide produced by many bacteria, fungi, and protozoan (and even filarial) parasites. This wide-ranging expression makes PNAG an attractive target for vaccine development, as it potentially encompasses a broad range of microorganisms. Significant progress has been made in discovering important properties of the biology of PNAG expression in recent years. The molecular characterization and regulation of operons for the production of PNAG biosynthetic proteins and enzymes have been studied in many bacteria. In addition, the physiological function of PNAG has been further elucidated. PNAG-based vaccines and PNAG-targeting antibodies have shown great efficacy in preclinical research. Furthermore, clinical tests for both vaccines and antibodies have been carried out in humans and economically important animals, and the results are promising. Although it is not destined to be a smooth road, we are optimistic about new vaccines and immunotherapeutics targeting PNAG becoming validated and eventually licensed for clinical use against multiple infectious agents.</p></div>\",\"PeriodicalId\":11783,\"journal\":{\"name\":\"Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2095809923004228/pdfft?md5=4893878e85cad224ab8302cc65721ad3&pid=1-s2.0-S2095809923004228-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095809923004228\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809923004228","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

β-1-6连接的聚-N-乙酰葡糖胺(PNAG)聚合物是一种保守的表面多糖,由许多细菌、真菌和原生动物(甚至丝虫)寄生虫产生。这种广泛的表达方式使 PNAG 成为一个有吸引力的疫苗开发目标,因为它有可能涵盖广泛的微生物。近年来,在发现 PNAG 表达生物学的重要特性方面取得了重大进展。对许多细菌中生产 PNAG 生物合成蛋白和酶的操作子的分子特征和调控进行了研究。此外,还进一步阐明了 PNAG 的生理功能。基于 PNAG 的疫苗和 PNAG 靶向抗体已在临床前研究中显示出巨大的功效。此外,疫苗和抗体已在人类和重要经济动物身上进行了临床试验,结果令人鼓舞。尽管这条道路注定不会一帆风顺,但我们对以 PNAG 为靶标的新型疫苗和免疫疗法通过验证并最终获得临床许可、用于对抗多种传染性病原体的前景充满信心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Antibodies Targeting a Conserved Surface Polysaccharide Are Protective Against a Wide Range of Microbial Pathogens Producing β-1–6-Linked Poly-N-Acetylglucosamine (PNAG)

The β-1–6-linked poly-N-acetylglucosamine (PNAG) polymer is a conserved surface polysaccharide produced by many bacteria, fungi, and protozoan (and even filarial) parasites. This wide-ranging expression makes PNAG an attractive target for vaccine development, as it potentially encompasses a broad range of microorganisms. Significant progress has been made in discovering important properties of the biology of PNAG expression in recent years. The molecular characterization and regulation of operons for the production of PNAG biosynthetic proteins and enzymes have been studied in many bacteria. In addition, the physiological function of PNAG has been further elucidated. PNAG-based vaccines and PNAG-targeting antibodies have shown great efficacy in preclinical research. Furthermore, clinical tests for both vaccines and antibodies have been carried out in humans and economically important animals, and the results are promising. Although it is not destined to be a smooth road, we are optimistic about new vaccines and immunotherapeutics targeting PNAG becoming validated and eventually licensed for clinical use against multiple infectious agents.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering
Engineering Environmental Science-Environmental Engineering
自引率
1.60%
发文量
335
审稿时长
35 days
期刊介绍: Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.
期刊最新文献
Digital Twins for Engineering Asset Management: Synthesis, Analytical Framework, and Future Directions Understanding the Resilience of Urban Rail Transit: Concepts, Reviews, and Trends Direct Ethylene Purification from Cracking Gas via a Metal–Organic Framework Through Pore Geometry Fitting Utilization of Bubbles and Oil for Microplastic Capture from Water Robust, Flexible, and Superhydrophobic Fabrics for High-Efficiency and Ultrawide-Band Microwave Absorption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1