vCDN中光路配置与VNF放置的联合优化

IF 1.9 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Optical Switching and Networking Pub Date : 2023-05-01 DOI:10.1016/j.osn.2023.100740
Takashi Miyamura , Akira Misawa
{"title":"vCDN中光路配置与VNF放置的联合优化","authors":"Takashi Miyamura ,&nbsp;Akira Misawa","doi":"10.1016/j.osn.2023.100740","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>We consider a joint </span>optimization problem<span> of optical network resources and virtual network function (VNF) placement for efficient content distribution. Current content </span></span>distribution networks<span> (CDNs) are tightly coupled with network function virtualization (NFV) technologies. A virtual CDN (vCDN) has been intensively investigated to efficiently cope with unpredictable traffic demand. In vCDN, CDN functions are virtually provided as VNF, and we can provide sufficient flexibility regarding the usage of compute resources under traffic demand changes. For the cost-effective CDN services, we must reduce the redundant usage of network resources while improving the efficiency of compute resources. However, a conventional optimal VNF placement technique in vCDN was focused on the efficiency of compute resources, and this can lead to an increase in network cost. To address this issue, we formulate the optimization problem as </span></span>mixed integer linear programming<span><span> and then propose a heuristic algorithm called a light-weight VNF </span>placement algorithm in vCDN (LP-vCDN) for reducing network cost while effectively utilizing compute resources. We conducted intensive numerical experiments and demonstrated that LP-vCDN always found solutions of sufficient quality with practical computational overhead.</span></p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"49 ","pages":"Article 100740"},"PeriodicalIF":1.9000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Joint optimization of optical path provisioning and VNF placement in vCDN\",\"authors\":\"Takashi Miyamura ,&nbsp;Akira Misawa\",\"doi\":\"10.1016/j.osn.2023.100740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>We consider a joint </span>optimization problem<span> of optical network resources and virtual network function (VNF) placement for efficient content distribution. Current content </span></span>distribution networks<span> (CDNs) are tightly coupled with network function virtualization (NFV) technologies. A virtual CDN (vCDN) has been intensively investigated to efficiently cope with unpredictable traffic demand. In vCDN, CDN functions are virtually provided as VNF, and we can provide sufficient flexibility regarding the usage of compute resources under traffic demand changes. For the cost-effective CDN services, we must reduce the redundant usage of network resources while improving the efficiency of compute resources. However, a conventional optimal VNF placement technique in vCDN was focused on the efficiency of compute resources, and this can lead to an increase in network cost. To address this issue, we formulate the optimization problem as </span></span>mixed integer linear programming<span><span> and then propose a heuristic algorithm called a light-weight VNF </span>placement algorithm in vCDN (LP-vCDN) for reducing network cost while effectively utilizing compute resources. We conducted intensive numerical experiments and demonstrated that LP-vCDN always found solutions of sufficient quality with practical computational overhead.</span></p></div>\",\"PeriodicalId\":54674,\"journal\":{\"name\":\"Optical Switching and Networking\",\"volume\":\"49 \",\"pages\":\"Article 100740\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Switching and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1573427723000115\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Switching and Networking","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1573427723000115","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑了一个光网络资源和虚拟网络功能(VNF)布局的联合优化问题,以实现高效的内容分发。当前的内容分发网络(CDN)与网络功能虚拟化(NFV)技术紧密结合。虚拟CDN(vCDN)已被深入研究,以有效地应对不可预测的流量需求。在vCDN中,CDN功能实际上是以VNF的形式提供的,我们可以在流量需求变化的情况下提供足够的计算资源使用灵活性。对于具有成本效益的CDN服务,我们必须在提高计算资源效率的同时减少网络资源的冗余使用。然而,vCDN中的传统优化VNF放置技术侧重于计算资源的效率,这可能导致网络成本的增加。为了解决这个问题,我们将优化问题公式化为混合整数线性规划,然后提出了一种启发式算法,称为vCDN中的轻量级VNF放置算法(LP-vCDN),以在有效利用计算资源的同时降低网络成本。我们进行了密集的数值实验,并证明LP-vCDN总是能找到具有实际计算开销的足够质量的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Joint optimization of optical path provisioning and VNF placement in vCDN

We consider a joint optimization problem of optical network resources and virtual network function (VNF) placement for efficient content distribution. Current content distribution networks (CDNs) are tightly coupled with network function virtualization (NFV) technologies. A virtual CDN (vCDN) has been intensively investigated to efficiently cope with unpredictable traffic demand. In vCDN, CDN functions are virtually provided as VNF, and we can provide sufficient flexibility regarding the usage of compute resources under traffic demand changes. For the cost-effective CDN services, we must reduce the redundant usage of network resources while improving the efficiency of compute resources. However, a conventional optimal VNF placement technique in vCDN was focused on the efficiency of compute resources, and this can lead to an increase in network cost. To address this issue, we formulate the optimization problem as mixed integer linear programming and then propose a heuristic algorithm called a light-weight VNF placement algorithm in vCDN (LP-vCDN) for reducing network cost while effectively utilizing compute resources. We conducted intensive numerical experiments and demonstrated that LP-vCDN always found solutions of sufficient quality with practical computational overhead.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optical Switching and Networking
Optical Switching and Networking COMPUTER SCIENCE, INFORMATION SYSTEMS-OPTICS
CiteScore
5.20
自引率
18.20%
发文量
29
审稿时长
77 days
期刊介绍: Optical Switching and Networking (OSN) is an archival journal aiming to provide complete coverage of all topics of interest to those involved in the optical and high-speed opto-electronic networking areas. The editorial board is committed to providing detailed, constructive feedback to submitted papers, as well as a fast turn-around time. Optical Switching and Networking considers high-quality, original, and unpublished contributions addressing all aspects of optical and opto-electronic networks. Specific areas of interest include, but are not limited to: • Optical and Opto-Electronic Backbone, Metropolitan and Local Area Networks • Optical Data Center Networks • Elastic optical networks • Green Optical Networks • Software Defined Optical Networks • Novel Multi-layer Architectures and Protocols (Ethernet, Internet, Physical Layer) • Optical Networks for Interet of Things (IOT) • Home Networks, In-Vehicle Networks, and Other Short-Reach Networks • Optical Access Networks • Optical Data Center Interconnection Systems • Optical OFDM and coherent optical network systems • Free Space Optics (FSO) networks • Hybrid Fiber - Wireless Networks • Optical Satellite Networks • Visible Light Communication Networks • Optical Storage Networks • Optical Network Security • Optical Network Resiliance and Reliability • Control Plane Issues and Signaling Protocols • Optical Quality of Service (OQoS) and Impairment Monitoring • Optical Layer Anycast, Broadcast and Multicast • Optical Network Applications, Testbeds and Experimental Networks • Optical Network for Science and High Performance Computing Networks
期刊最新文献
Modeling and upgrade of disaster-resilient interdependent networks using machine learning Self-adjusting resilient control plane for virtual software-defined optical networks NFV recovery strategies for critical services after massive failures in optical networks Editorial Board An architecture to improve performance of software-defined optical networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1