各向异性致密油裂缝定向重复压裂水平井拟稳态常数敏感性及应用

Ruoyu Li , Mingxian Wang , Ruifei Wang , Ying Tang
{"title":"各向异性致密油裂缝定向重复压裂水平井拟稳态常数敏感性及应用","authors":"Ruoyu Li ,&nbsp;Mingxian Wang ,&nbsp;Ruifei Wang ,&nbsp;Ying Tang","doi":"10.1016/j.uncres.2023.01.005","DOIUrl":null,"url":null,"abstract":"<div><p>Fetkovich or Blasingame type rate decline analysis is a common and practical method to obtain reservoir parameters and evaluate well productivity. Pseudo-steady-state constant is an indispensable parameter for establishing these new type rate decline curves and works as a bridge linking conventional productivity and new type productivity. Refracturing is widely used to enhance tight oil wells’ productivity and improve their economic benefits, the pseudo-steady-state constant of refracturing horizontal wells has been presented in our previous research, but an in-depth discussion on the definition, accuracy, sensitivity, and application of this constant has not been conducted. It results in the insufficient understanding of the physical meaning, characteristics, and functions of pseudo-steady-state constant at present. In this study, taking the derived pseudo-steady-state constant for refracturing horizontal wells with fracture reorientation as an example, its accuracy was verified by an equivalent model presented in the literature, and the sensitivity of relevant key parameters on this constant was investigated. For the refracturing horizontal well defined in this study, pseudo-steady-state constant is independent of time, and related to fracture conductivity, fracture face damage, reorientation fracture number and permeability anisotropy. Results show that this constant decreases with the increase of fracture conductivity, but tends to remain unchanged when fracture conductivity increases to a certain extent. Meanwhile, this constant shows a positive correlation with fracture face damage and permeability anisotropy, but an inverse correlation with reorientation fracture number. Blasingame type rate decline curves of refracturing horizontal wells with fracture reorientation were also established, regarding as a practical application of this pseudo-steady-state constant and a concrete manifestation of its bridge-linking function. These type curves are directly conducive to the inversion of reservoir properties and fracturing parameters and the prediction of future productivity for refracturing horizontal wells. More importantly, this study is helpful to understand and strengthen the role and importance of pseudo-steady-state constant, and also beneficial to the establishment of new type rate decline curves of other similar models.</p></div>","PeriodicalId":101263,"journal":{"name":"Unconventional Resources","volume":"3 ","pages":"Pages 123-133"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sensitivity and application of pseudo-steady-state constant for refracturing horizontal wells with fracture reorientation in anisotropic tight oil reservoirs\",\"authors\":\"Ruoyu Li ,&nbsp;Mingxian Wang ,&nbsp;Ruifei Wang ,&nbsp;Ying Tang\",\"doi\":\"10.1016/j.uncres.2023.01.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fetkovich or Blasingame type rate decline analysis is a common and practical method to obtain reservoir parameters and evaluate well productivity. Pseudo-steady-state constant is an indispensable parameter for establishing these new type rate decline curves and works as a bridge linking conventional productivity and new type productivity. Refracturing is widely used to enhance tight oil wells’ productivity and improve their economic benefits, the pseudo-steady-state constant of refracturing horizontal wells has been presented in our previous research, but an in-depth discussion on the definition, accuracy, sensitivity, and application of this constant has not been conducted. It results in the insufficient understanding of the physical meaning, characteristics, and functions of pseudo-steady-state constant at present. In this study, taking the derived pseudo-steady-state constant for refracturing horizontal wells with fracture reorientation as an example, its accuracy was verified by an equivalent model presented in the literature, and the sensitivity of relevant key parameters on this constant was investigated. For the refracturing horizontal well defined in this study, pseudo-steady-state constant is independent of time, and related to fracture conductivity, fracture face damage, reorientation fracture number and permeability anisotropy. Results show that this constant decreases with the increase of fracture conductivity, but tends to remain unchanged when fracture conductivity increases to a certain extent. Meanwhile, this constant shows a positive correlation with fracture face damage and permeability anisotropy, but an inverse correlation with reorientation fracture number. Blasingame type rate decline curves of refracturing horizontal wells with fracture reorientation were also established, regarding as a practical application of this pseudo-steady-state constant and a concrete manifestation of its bridge-linking function. These type curves are directly conducive to the inversion of reservoir properties and fracturing parameters and the prediction of future productivity for refracturing horizontal wells. More importantly, this study is helpful to understand and strengthen the role and importance of pseudo-steady-state constant, and also beneficial to the establishment of new type rate decline curves of other similar models.</p></div>\",\"PeriodicalId\":101263,\"journal\":{\"name\":\"Unconventional Resources\",\"volume\":\"3 \",\"pages\":\"Pages 123-133\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Unconventional Resources\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666519023000055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Unconventional Resources","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666519023000055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

Fetkovich或Blasingame型递减率分析是获得储层参数和评价井产能的一种常用而实用的方法。拟稳态常数是建立这些新型生产率下降曲线的一个不可或缺的参数,是连接传统生产率和新型生产率的桥梁。重复压裂被广泛用于提高致密油井的产能和提高其经济效益,我们以前的研究中已经提出了重复压裂水平井的拟稳态常数,但尚未对该常数的定义、精度、灵敏度和应用进行深入讨论。这导致目前人们对伪稳态常数的物理意义、特性和函数认识不足。本研究以导出的具有裂缝重新定向的折射水平井拟稳态常数为例,通过文献中提出的等效模型验证了其准确性,并研究了相关关键参数对该常数的敏感性。对于本研究中定义的折射水平井,伪稳态常数与时间无关,与裂缝电导率、裂缝面损伤、重定向裂缝数和渗透率各向异性有关。结果表明,该常数随裂缝电导率的增加而减小,但当裂缝电导率增加到一定程度时,该常数趋于不变。同时,该常数与裂缝面损伤和渗透率各向异性呈正相关,但与重定向裂缝数呈负相关。针对这种拟稳态常数的实际应用及其桥接作用的具体体现,建立了具有裂缝重新定向的折射水平井的Blasingame型速率递减曲线。这些类型曲线直接有利于折射水平井储层性质和压裂参数的反演以及未来产能的预测。更重要的是,本研究有助于理解和加强伪稳态常数的作用和重要性,也有利于建立其他类似模型的新型速率下降曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sensitivity and application of pseudo-steady-state constant for refracturing horizontal wells with fracture reorientation in anisotropic tight oil reservoirs

Fetkovich or Blasingame type rate decline analysis is a common and practical method to obtain reservoir parameters and evaluate well productivity. Pseudo-steady-state constant is an indispensable parameter for establishing these new type rate decline curves and works as a bridge linking conventional productivity and new type productivity. Refracturing is widely used to enhance tight oil wells’ productivity and improve their economic benefits, the pseudo-steady-state constant of refracturing horizontal wells has been presented in our previous research, but an in-depth discussion on the definition, accuracy, sensitivity, and application of this constant has not been conducted. It results in the insufficient understanding of the physical meaning, characteristics, and functions of pseudo-steady-state constant at present. In this study, taking the derived pseudo-steady-state constant for refracturing horizontal wells with fracture reorientation as an example, its accuracy was verified by an equivalent model presented in the literature, and the sensitivity of relevant key parameters on this constant was investigated. For the refracturing horizontal well defined in this study, pseudo-steady-state constant is independent of time, and related to fracture conductivity, fracture face damage, reorientation fracture number and permeability anisotropy. Results show that this constant decreases with the increase of fracture conductivity, but tends to remain unchanged when fracture conductivity increases to a certain extent. Meanwhile, this constant shows a positive correlation with fracture face damage and permeability anisotropy, but an inverse correlation with reorientation fracture number. Blasingame type rate decline curves of refracturing horizontal wells with fracture reorientation were also established, regarding as a practical application of this pseudo-steady-state constant and a concrete manifestation of its bridge-linking function. These type curves are directly conducive to the inversion of reservoir properties and fracturing parameters and the prediction of future productivity for refracturing horizontal wells. More importantly, this study is helpful to understand and strengthen the role and importance of pseudo-steady-state constant, and also beneficial to the establishment of new type rate decline curves of other similar models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
期刊最新文献
Mineralogy and geochemistry of shale from Shanxi Formation, Southern North China Basin: Implication for organic matter accumulation Optimization and potential assessment of CO2 geological storage caprock in the saline aquifers of the Qingjiang Basin, middle and lower reaches of the Yangtze River Exploring geothermal energy as a sustainable source of energy: A systemic review Offshore wind technology of India: Potential and perspectives Enhancing heat recovery efficiency in chimney exhaust systems using thermoelectric generators – Thermal modeling and parametric analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1