COVAD:使用基于自注意的深度学习模型的面向内容的视频异常检测

Q1 Computer Science Virtual Reality Intelligent Hardware Pub Date : 2023-02-01 DOI:10.1016/j.vrih.2022.06.001
Wenhao Shao , Praboda Rajapaksha , Yanyan Wei , Dun Li , Noel Crespi , Zhigang Luo
{"title":"COVAD:使用基于自注意的深度学习模型的面向内容的视频异常检测","authors":"Wenhao Shao ,&nbsp;Praboda Rajapaksha ,&nbsp;Yanyan Wei ,&nbsp;Dun Li ,&nbsp;Noel Crespi ,&nbsp;Zhigang Luo","doi":"10.1016/j.vrih.2022.06.001","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Video anomaly detection has always been a hot topic and attracting an increasing amount of attention. Much of the existing methods on video anomaly detection depend on processing the entire video rather than considering only the significant context. This paper proposes a novel video anomaly detection method named COVAD, which mainly focuses on the region of interest in the video instead of the entire video. Our proposed COVAD method is based on an auto-encoded convolutional neural network and coordinated attention mechanism, which can effectively capture meaningful objects in the video and dependencies between different objects. Relying on the existing memory-guided video frame prediction network, our algorithm can more effectively predict the future motion and appearance of objects in the video. Our proposed algorithm obtained better experimental results on multiple data sets and outperformed the baseline models considered in our analysis. At the same time we improve a visual test that can provide pixel-level anomaly explanations.</p></div>","PeriodicalId":33538,"journal":{"name":"Virtual Reality Intelligent Hardware","volume":"5 1","pages":"Pages 24-41"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COVAD: Content-Oriented Video Anomaly Detection using a Self-Attention based Deep Learning Model\",\"authors\":\"Wenhao Shao ,&nbsp;Praboda Rajapaksha ,&nbsp;Yanyan Wei ,&nbsp;Dun Li ,&nbsp;Noel Crespi ,&nbsp;Zhigang Luo\",\"doi\":\"10.1016/j.vrih.2022.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Video anomaly detection has always been a hot topic and attracting an increasing amount of attention. Much of the existing methods on video anomaly detection depend on processing the entire video rather than considering only the significant context. This paper proposes a novel video anomaly detection method named COVAD, which mainly focuses on the region of interest in the video instead of the entire video. Our proposed COVAD method is based on an auto-encoded convolutional neural network and coordinated attention mechanism, which can effectively capture meaningful objects in the video and dependencies between different objects. Relying on the existing memory-guided video frame prediction network, our algorithm can more effectively predict the future motion and appearance of objects in the video. Our proposed algorithm obtained better experimental results on multiple data sets and outperformed the baseline models considered in our analysis. At the same time we improve a visual test that can provide pixel-level anomaly explanations.</p></div>\",\"PeriodicalId\":33538,\"journal\":{\"name\":\"Virtual Reality Intelligent Hardware\",\"volume\":\"5 1\",\"pages\":\"Pages 24-41\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virtual Reality Intelligent Hardware\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2096579622000481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual Reality Intelligent Hardware","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096579622000481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

背景视频异常检测一直是一个热门话题,越来越受到人们的关注。现有的视频异常检测方法大多依赖于处理整个视频,而不是只考虑重要的上下文。本文提出了一种新的视频异常检测方法COVAD,该方法主要关注视频中的感兴趣区域,而不是整个视频。我们提出的COVAD方法基于自动编码卷积神经网络和协调注意力机制,可以有效地捕捉视频中有意义的对象以及不同对象之间的依赖关系。基于现有的记忆引导视频帧预测网络,我们的算法可以更有效地预测视频中对象的未来运动和外观。我们提出的算法在多个数据集上获得了更好的实验结果,并且优于我们分析中考虑的基线模型。同时,我们改进了视觉测试,可以提供像素级异常解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COVAD: Content-Oriented Video Anomaly Detection using a Self-Attention based Deep Learning Model

Background

Video anomaly detection has always been a hot topic and attracting an increasing amount of attention. Much of the existing methods on video anomaly detection depend on processing the entire video rather than considering only the significant context. This paper proposes a novel video anomaly detection method named COVAD, which mainly focuses on the region of interest in the video instead of the entire video. Our proposed COVAD method is based on an auto-encoded convolutional neural network and coordinated attention mechanism, which can effectively capture meaningful objects in the video and dependencies between different objects. Relying on the existing memory-guided video frame prediction network, our algorithm can more effectively predict the future motion and appearance of objects in the video. Our proposed algorithm obtained better experimental results on multiple data sets and outperformed the baseline models considered in our analysis. At the same time we improve a visual test that can provide pixel-level anomaly explanations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Virtual Reality  Intelligent Hardware
Virtual Reality Intelligent Hardware Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.40
自引率
0.00%
发文量
35
审稿时长
12 weeks
期刊最新文献
Co-salient object detection with iterative purification and predictive optimization CURDIS: A template for incremental curve discretization algorithms and its application to conics Mesh representation matters: investigating the influence of different mesh features on perceptual and spatial fidelity of deep 3D morphable models Music-stylized hierarchical dance synthesis with user control Pre-training transformer with dual-branch context content module for table detection in document images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1