{"title":"基于共价有机框架的纳米平台,具有可调的机械性能,用于药物传递和癌症治疗","authors":"Liefeng Hu , Yonggang Lv","doi":"10.1016/j.mbm.2023.100024","DOIUrl":null,"url":null,"abstract":"<div><p>Covalent organic frameworks (COFs) are emerging crystalline porous materials composed of covalently linked and periodically arranged organic molecules, which exhibit mechanical properties mediated by structural diversity. Meanwhile, the tunable mechanical properties of COFs have been widely applied in drug delivery and cancer therapy. Herein, we first summarize the regulation strategies of COFs with different mechanical strengths, such as structural dimensions, pore sizes, and host–guest interaction forces. Then, the remarkable achievements of COFs with different mechanical properties in drug delivery and cancer therapy in recent years are introduced. Finally, the mechanical strength regulation of COFs and the remaining challenges for biomedical applications are presented. This review provides a more comprehensive understanding of the application of COFs systems with tunable mechanical properties in the field of biomedicine, and promotes the development of interdisciplinary research between COFs materials and nanomedicine.</p></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"1 2","pages":"Article 100024"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Covalent organic framework-based nanoplatforms with tunable mechanical properties for drug delivery and cancer therapy\",\"authors\":\"Liefeng Hu , Yonggang Lv\",\"doi\":\"10.1016/j.mbm.2023.100024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Covalent organic frameworks (COFs) are emerging crystalline porous materials composed of covalently linked and periodically arranged organic molecules, which exhibit mechanical properties mediated by structural diversity. Meanwhile, the tunable mechanical properties of COFs have been widely applied in drug delivery and cancer therapy. Herein, we first summarize the regulation strategies of COFs with different mechanical strengths, such as structural dimensions, pore sizes, and host–guest interaction forces. Then, the remarkable achievements of COFs with different mechanical properties in drug delivery and cancer therapy in recent years are introduced. Finally, the mechanical strength regulation of COFs and the remaining challenges for biomedical applications are presented. This review provides a more comprehensive understanding of the application of COFs systems with tunable mechanical properties in the field of biomedicine, and promotes the development of interdisciplinary research between COFs materials and nanomedicine.</p></div>\",\"PeriodicalId\":100900,\"journal\":{\"name\":\"Mechanobiology in Medicine\",\"volume\":\"1 2\",\"pages\":\"Article 100024\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanobiology in Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949907023000244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanobiology in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949907023000244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Covalent organic framework-based nanoplatforms with tunable mechanical properties for drug delivery and cancer therapy
Covalent organic frameworks (COFs) are emerging crystalline porous materials composed of covalently linked and periodically arranged organic molecules, which exhibit mechanical properties mediated by structural diversity. Meanwhile, the tunable mechanical properties of COFs have been widely applied in drug delivery and cancer therapy. Herein, we first summarize the regulation strategies of COFs with different mechanical strengths, such as structural dimensions, pore sizes, and host–guest interaction forces. Then, the remarkable achievements of COFs with different mechanical properties in drug delivery and cancer therapy in recent years are introduced. Finally, the mechanical strength regulation of COFs and the remaining challenges for biomedical applications are presented. This review provides a more comprehensive understanding of the application of COFs systems with tunable mechanical properties in the field of biomedicine, and promotes the development of interdisciplinary research between COFs materials and nanomedicine.