管理法规遵从性的使用点和进入点:对州行政人员的调查

Katherine Alfredo, Madelyn Wilson, Alan Roberson
{"title":"管理法规遵从性的使用点和进入点:对州行政人员的调查","authors":"Katherine Alfredo, Madelyn Wilson, Alan Roberson","doi":"10.1002/aws2.1335","DOIUrl":null,"url":null,"abstract":"The USEPA (United States Environmental Protection Agency) Lead and Copper Rule Revisions allow the use of distributed treatment approaches such as point‐of‐use (POU) and point‐of‐entry (POE) treatment for systems with 10,000 connections or less as a compliance strategy. However, this poses an opportunity for the USEPA to reevaluate system size recommendations for distributed treatment. The current research uses online surveys and semi‐structured interviews (SSIs) to highlight the general sentiment of state regulators managing POU/POE devices and inquiries. Analysis of the 43 survey responses and 13 SSIs revealed that most state regulators described systems of approximately 30–50 connections as the most successful. Resident cooperation, operation and maintenance, monitoring, and the actual implementation of distributed treatment approaches were repeatedly listed as the greatest concerns. As the use of distributed treatment continues to expand, the water sector must devote research efforts to quantitatively determining the drivers of success as well as highlighting clear indicators of potential failure.","PeriodicalId":101301,"journal":{"name":"AWWA water science","volume":"5 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aws2.1335","citationCount":"1","resultStr":"{\"title\":\"Management of point-of-use and point-of-entry for regulatory compliance: Survey of state administrators\",\"authors\":\"Katherine Alfredo, Madelyn Wilson, Alan Roberson\",\"doi\":\"10.1002/aws2.1335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The USEPA (United States Environmental Protection Agency) Lead and Copper Rule Revisions allow the use of distributed treatment approaches such as point‐of‐use (POU) and point‐of‐entry (POE) treatment for systems with 10,000 connections or less as a compliance strategy. However, this poses an opportunity for the USEPA to reevaluate system size recommendations for distributed treatment. The current research uses online surveys and semi‐structured interviews (SSIs) to highlight the general sentiment of state regulators managing POU/POE devices and inquiries. Analysis of the 43 survey responses and 13 SSIs revealed that most state regulators described systems of approximately 30–50 connections as the most successful. Resident cooperation, operation and maintenance, monitoring, and the actual implementation of distributed treatment approaches were repeatedly listed as the greatest concerns. As the use of distributed treatment continues to expand, the water sector must devote research efforts to quantitatively determining the drivers of success as well as highlighting clear indicators of potential failure.\",\"PeriodicalId\":101301,\"journal\":{\"name\":\"AWWA water science\",\"volume\":\"5 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aws2.1335\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AWWA water science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aws2.1335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AWWA water science","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aws2.1335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

USEPA(美国环境保护局)铅和铜规则修订允许使用分布式处理方法,如使用点(POU)和入口点(POE)处理,将10000个或更少连接的系统作为合规策略。然而,这为美国环保局重新评估分布式治疗的系统规模建议提供了机会。目前的研究使用在线调查和半结构化访谈(SSI)来突出管理POU/POE设备和查询的州监管机构的普遍情绪。对43份调查回复和13份SSI的分析显示,大多数州监管机构将大约30-50个连接的系统描述为最成功的系统。居民合作、运营和维护、监测以及分布式治疗方法的实际实施一再被列为最大的关切。随着分布式处理的使用不断扩大,水务部门必须投入研究工作,从数量上确定成功的驱动因素,并突出潜在失败的明确指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Management of point-of-use and point-of-entry for regulatory compliance: Survey of state administrators
The USEPA (United States Environmental Protection Agency) Lead and Copper Rule Revisions allow the use of distributed treatment approaches such as point‐of‐use (POU) and point‐of‐entry (POE) treatment for systems with 10,000 connections or less as a compliance strategy. However, this poses an opportunity for the USEPA to reevaluate system size recommendations for distributed treatment. The current research uses online surveys and semi‐structured interviews (SSIs) to highlight the general sentiment of state regulators managing POU/POE devices and inquiries. Analysis of the 43 survey responses and 13 SSIs revealed that most state regulators described systems of approximately 30–50 connections as the most successful. Resident cooperation, operation and maintenance, monitoring, and the actual implementation of distributed treatment approaches were repeatedly listed as the greatest concerns. As the use of distributed treatment continues to expand, the water sector must devote research efforts to quantitatively determining the drivers of success as well as highlighting clear indicators of potential failure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
期刊最新文献
Lithium in drinking water: Review of chemistry, analytical methods, and treatment technologies A pilot-scale study of potable reuse impacts on surface water treatment 2015 United States Public Health Service optimal fluoride level adherence and operation among adjusting water systems in 40 states: 2016–2021 Drinking water buffer intensity simulator (BIS): Development and practical simulations The role of genus Bacillus in biodegradation of microcystins: Implications for the removal of cyanotoxins from tropical freshwaters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1