{"title":"使用垂直纳米磁逻辑的高效算法设计架构","authors":"Neeraj Kumar Misra , Bandan Kumar Bhoi","doi":"10.1016/j.nancom.2023.100454","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>As the process of scaling down continues at a rapid pace, there is a growing need for an alternative semiconductor device to replace CMOS. One of the alternatives that attracted a lot of attention is called nanomagnetic logic (NML). This is because NML delivers a high device density in addition to a non-volatility of stored information, beyond-CMOS technologies, and device work at room temperature. It is necessary to lower the circuit density and increase the speed of circuits like adders. Using emerging NML logic, we created a full-adder, and ripple </span>carry adder (RCA) with a minimum area. As a result, the invented multilayer-based decimal design makes use of RCA, and full-adder, for innovative 3D topology. We used an NML framework built with perpendicular nanomagnetic (pNML) layers to simulate the characteristics of these devices. With the adder designs that have been offered the latency values are relatively low while performing </span>exhaustive testing. Using pNML technology, a decimal adder has been constructed for the first time in the literature. In addition, simulations are carried out with the help of the Modelsim simulator. During the process of nanomagnetic designing consideration is given to both of these aspects as latency and area. To create an </span>NML circuit, the tool MagCAD is employed. Results are better using the pNML environment-based full adder, RCA and decimal adder.</p></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"36 ","pages":"Article 100454"},"PeriodicalIF":2.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient architecture for arithmetic designs using perpendicular NanoMagnetic Logic\",\"authors\":\"Neeraj Kumar Misra , Bandan Kumar Bhoi\",\"doi\":\"10.1016/j.nancom.2023.100454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>As the process of scaling down continues at a rapid pace, there is a growing need for an alternative semiconductor device to replace CMOS. One of the alternatives that attracted a lot of attention is called nanomagnetic logic (NML). This is because NML delivers a high device density in addition to a non-volatility of stored information, beyond-CMOS technologies, and device work at room temperature. It is necessary to lower the circuit density and increase the speed of circuits like adders. Using emerging NML logic, we created a full-adder, and ripple </span>carry adder (RCA) with a minimum area. As a result, the invented multilayer-based decimal design makes use of RCA, and full-adder, for innovative 3D topology. We used an NML framework built with perpendicular nanomagnetic (pNML) layers to simulate the characteristics of these devices. With the adder designs that have been offered the latency values are relatively low while performing </span>exhaustive testing. Using pNML technology, a decimal adder has been constructed for the first time in the literature. In addition, simulations are carried out with the help of the Modelsim simulator. During the process of nanomagnetic designing consideration is given to both of these aspects as latency and area. To create an </span>NML circuit, the tool MagCAD is employed. Results are better using the pNML environment-based full adder, RCA and decimal adder.</p></div>\",\"PeriodicalId\":54336,\"journal\":{\"name\":\"Nano Communication Networks\",\"volume\":\"36 \",\"pages\":\"Article 100454\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Communication Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878778923000200\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Communication Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878778923000200","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Efficient architecture for arithmetic designs using perpendicular NanoMagnetic Logic
As the process of scaling down continues at a rapid pace, there is a growing need for an alternative semiconductor device to replace CMOS. One of the alternatives that attracted a lot of attention is called nanomagnetic logic (NML). This is because NML delivers a high device density in addition to a non-volatility of stored information, beyond-CMOS technologies, and device work at room temperature. It is necessary to lower the circuit density and increase the speed of circuits like adders. Using emerging NML logic, we created a full-adder, and ripple carry adder (RCA) with a minimum area. As a result, the invented multilayer-based decimal design makes use of RCA, and full-adder, for innovative 3D topology. We used an NML framework built with perpendicular nanomagnetic (pNML) layers to simulate the characteristics of these devices. With the adder designs that have been offered the latency values are relatively low while performing exhaustive testing. Using pNML technology, a decimal adder has been constructed for the first time in the literature. In addition, simulations are carried out with the help of the Modelsim simulator. During the process of nanomagnetic designing consideration is given to both of these aspects as latency and area. To create an NML circuit, the tool MagCAD is employed. Results are better using the pNML environment-based full adder, RCA and decimal adder.
期刊介绍:
The Nano Communication Networks Journal is an international, archival and multi-disciplinary journal providing a publication vehicle for complete coverage of all topics of interest to those involved in all aspects of nanoscale communication and networking. Theoretical research contributions presenting new techniques, concepts or analyses; applied contributions reporting on experiences and experiments; and tutorial and survey manuscripts are published.
Nano Communication Networks is a part of the COMNET (Computer Networks) family of journals within Elsevier. The family of journals covers all aspects of networking except nanonetworking, which is the scope of this journal.