一种新的最优QCA-DEMUX树型路由器设计

IF 2.9 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Nano Communication Networks Pub Date : 2023-03-01 DOI:10.1016/j.nancom.2023.100439
Reza Akbari-Hasanjani, Reza Sabbaghi-Nadooshan
{"title":"一种新的最优QCA-DEMUX树型路由器设计","authors":"Reza Akbari-Hasanjani,&nbsp;Reza Sabbaghi-Nadooshan","doi":"10.1016/j.nancom.2023.100439","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Quantum-dot cellular automata (QCA) is a new technology to replace CMOS technology in </span>digital circuits<span>. This replacement is necessary since further miniaturization of CMOS devices has posed serious challenges. In this paper, an optimized 1:2 demultiplexer (1:2 DEMUX) as a tree network switch is proposed. The tree network is examined, and the switches, which are the main components of the network, are used for routing. The proposed 1:2 DEMUX uses a rotated majority gate (RMG) based on QCA technology. According to the evaluation of the proposed 1:2 DEMUX circuit, 16 QCA cells are used with a total area and latency of 0.</span></span><span><math><mrow><mn>02</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span><sup>2</sup><span> and 0.25 clock cycles, respectively. A comparison with the best reported similar designs shows 15.78% improvement in the complexity, cell area, and area usage of the proposed 1:2 DEMUX. Another parameter that plays a very important role in QCA circuits is energy consumption, which can be measured with QCAPro software. In the proposed DEMUX circuit, the values of energy dissipation for 0.5, 1, and 1.5 E</span><span><math><msub><mrow></mrow><mrow><mi>k</mi></mrow></msub></math></span> are 16.75, 24.84, and 34.6 meV respectively. The proposed router is the first of its kind that uses QCA-based DEMUX. This router has 146 cells, and its total area and latency are equal to 0.<span><math><mrow><mn>25</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span><sup>2</sup> and 0.75 clock cycles, respectively.</p></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"35 ","pages":"Article 100439"},"PeriodicalIF":2.9000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tree router design using a novel optimal QCA DEMUX\",\"authors\":\"Reza Akbari-Hasanjani,&nbsp;Reza Sabbaghi-Nadooshan\",\"doi\":\"10.1016/j.nancom.2023.100439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Quantum-dot cellular automata (QCA) is a new technology to replace CMOS technology in </span>digital circuits<span>. This replacement is necessary since further miniaturization of CMOS devices has posed serious challenges. In this paper, an optimized 1:2 demultiplexer (1:2 DEMUX) as a tree network switch is proposed. The tree network is examined, and the switches, which are the main components of the network, are used for routing. The proposed 1:2 DEMUX uses a rotated majority gate (RMG) based on QCA technology. According to the evaluation of the proposed 1:2 DEMUX circuit, 16 QCA cells are used with a total area and latency of 0.</span></span><span><math><mrow><mn>02</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span><sup>2</sup><span> and 0.25 clock cycles, respectively. A comparison with the best reported similar designs shows 15.78% improvement in the complexity, cell area, and area usage of the proposed 1:2 DEMUX. Another parameter that plays a very important role in QCA circuits is energy consumption, which can be measured with QCAPro software. In the proposed DEMUX circuit, the values of energy dissipation for 0.5, 1, and 1.5 E</span><span><math><msub><mrow></mrow><mrow><mi>k</mi></mrow></msub></math></span> are 16.75, 24.84, and 34.6 meV respectively. The proposed router is the first of its kind that uses QCA-based DEMUX. This router has 146 cells, and its total area and latency are equal to 0.<span><math><mrow><mn>25</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span><sup>2</sup> and 0.75 clock cycles, respectively.</p></div>\",\"PeriodicalId\":54336,\"journal\":{\"name\":\"Nano Communication Networks\",\"volume\":\"35 \",\"pages\":\"Article 100439\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Communication Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878778923000054\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Communication Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878778923000054","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

量子点细胞自动机(QCA)是一种在数字电路中取代CMOS技术的新技术。这种替换是必要的,因为CMOS器件的进一步小型化已经带来了严重的挑战。本文提出了一种优化的1:2多路分解器(1:2 DEMUX)作为树形网络交换机。对树形网络进行了检查,并使用作为网络主要组件的交换机进行路由。所提出的1:2 DEMUX使用基于QCA技术的旋转多数门(RMG)。根据对所提出的1:2 DEMUX电路的评估,使用了16个QCA单元,总面积和延迟分别为0.02μm2和0.25个时钟周期。与最佳报道的类似设计相比,所提出的1:2 DEMUX在复杂性、小区面积和面积使用方面提高了15.78%。在QCA电路中起着非常重要作用的另一个参数是能量消耗,它可以用QCAPro软件进行测量。在所提出的DEMUX电路中,0.5、1和1.5Ek的能量耗散值分别为16.75、24.84和34.6meV。所提出的路由器是第一个使用基于QCA的DEMUX的路由器。该路由器有146个单元,其总面积和延迟分别等于0.25μm2和0.75个时钟周期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tree router design using a novel optimal QCA DEMUX

Quantum-dot cellular automata (QCA) is a new technology to replace CMOS technology in digital circuits. This replacement is necessary since further miniaturization of CMOS devices has posed serious challenges. In this paper, an optimized 1:2 demultiplexer (1:2 DEMUX) as a tree network switch is proposed. The tree network is examined, and the switches, which are the main components of the network, are used for routing. The proposed 1:2 DEMUX uses a rotated majority gate (RMG) based on QCA technology. According to the evaluation of the proposed 1:2 DEMUX circuit, 16 QCA cells are used with a total area and latency of 0.02μm2 and 0.25 clock cycles, respectively. A comparison with the best reported similar designs shows 15.78% improvement in the complexity, cell area, and area usage of the proposed 1:2 DEMUX. Another parameter that plays a very important role in QCA circuits is energy consumption, which can be measured with QCAPro software. In the proposed DEMUX circuit, the values of energy dissipation for 0.5, 1, and 1.5 Ek are 16.75, 24.84, and 34.6 meV respectively. The proposed router is the first of its kind that uses QCA-based DEMUX. This router has 146 cells, and its total area and latency are equal to 0.25μm2 and 0.75 clock cycles, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Communication Networks
Nano Communication Networks Mathematics-Applied Mathematics
CiteScore
6.00
自引率
6.90%
发文量
14
期刊介绍: The Nano Communication Networks Journal is an international, archival and multi-disciplinary journal providing a publication vehicle for complete coverage of all topics of interest to those involved in all aspects of nanoscale communication and networking. Theoretical research contributions presenting new techniques, concepts or analyses; applied contributions reporting on experiences and experiments; and tutorial and survey manuscripts are published. Nano Communication Networks is a part of the COMNET (Computer Networks) family of journals within Elsevier. The family of journals covers all aspects of networking except nanonetworking, which is the scope of this journal.
期刊最新文献
Estimating channel coefficients for complex topologies in 3D diffusion channel using artificial neural networks Terahertz beam shaping using space-time phase-only coded metasurfaces All-optical AND, NAND, OR, NOR and NOT logic gates using two nested microrings in a racetrack ring resonator End-to-end synaptic molecular communication with astrocytic feedback and generic three-state receptors Design of ternary reversible Feynman and Toffoli gates in ternary quantum-dot cellular automata
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1