{"title":"流辅助分子通信系统中的联合定位和信道估计","authors":"Ajit Kumar, Sudhir Kumar","doi":"10.1016/j.nancom.2022.100434","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>In this paper, we present a joint </span>localization<span> and channel parameter estimation method in the presence of signal-dependent noise and inter-symbol interference for diffusive molecular communication systems. The joint parameter estimation of the nanomachine can provide reliable communication in a generic diffusive molecular communication system. In particular, an iterative </span></span>maximum likelihood estimation<span> (MLE) approach for jointly estimating locations, flow velocity, and diffusion coefficient is carried out. The Cramer–Rao lower bound on the variance of channel parameters and location is derived. The normalized estimation error is marginally higher for unknown parameters case than that of some known parameters. The individual result (location estimation or channel parameters estimation) outperforms the existing methods.</span></p></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"35 ","pages":"Article 100434"},"PeriodicalIF":2.9000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Joint localization and channel estimation in flow-assisted molecular communication systems\",\"authors\":\"Ajit Kumar, Sudhir Kumar\",\"doi\":\"10.1016/j.nancom.2022.100434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>In this paper, we present a joint </span>localization<span> and channel parameter estimation method in the presence of signal-dependent noise and inter-symbol interference for diffusive molecular communication systems. The joint parameter estimation of the nanomachine can provide reliable communication in a generic diffusive molecular communication system. In particular, an iterative </span></span>maximum likelihood estimation<span> (MLE) approach for jointly estimating locations, flow velocity, and diffusion coefficient is carried out. The Cramer–Rao lower bound on the variance of channel parameters and location is derived. The normalized estimation error is marginally higher for unknown parameters case than that of some known parameters. The individual result (location estimation or channel parameters estimation) outperforms the existing methods.</span></p></div>\",\"PeriodicalId\":54336,\"journal\":{\"name\":\"Nano Communication Networks\",\"volume\":\"35 \",\"pages\":\"Article 100434\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Communication Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878778922000370\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Communication Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878778922000370","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Joint localization and channel estimation in flow-assisted molecular communication systems
In this paper, we present a joint localization and channel parameter estimation method in the presence of signal-dependent noise and inter-symbol interference for diffusive molecular communication systems. The joint parameter estimation of the nanomachine can provide reliable communication in a generic diffusive molecular communication system. In particular, an iterative maximum likelihood estimation (MLE) approach for jointly estimating locations, flow velocity, and diffusion coefficient is carried out. The Cramer–Rao lower bound on the variance of channel parameters and location is derived. The normalized estimation error is marginally higher for unknown parameters case than that of some known parameters. The individual result (location estimation or channel parameters estimation) outperforms the existing methods.
期刊介绍:
The Nano Communication Networks Journal is an international, archival and multi-disciplinary journal providing a publication vehicle for complete coverage of all topics of interest to those involved in all aspects of nanoscale communication and networking. Theoretical research contributions presenting new techniques, concepts or analyses; applied contributions reporting on experiences and experiments; and tutorial and survey manuscripts are published.
Nano Communication Networks is a part of the COMNET (Computer Networks) family of journals within Elsevier. The family of journals covers all aspects of networking except nanonetworking, which is the scope of this journal.