分类器学习曲线的新模型

Vincent Berthiaume
{"title":"分类器学习曲线的新模型","authors":"Vincent Berthiaume","doi":"10.1007/s43674-022-00040-0","DOIUrl":null,"url":null,"abstract":"<div><p>In machine learning, a classifier has a certain learning curve i.e. the curve of the error/success probability as a function of the training set size. Finding the learning curve for a large interval of sizes takes a lot of processing time. A better method is to estimate the error probabilities only for few minimal sizes and use the pairs size-estimate as data points to model the learning curve. Searchers have tested different models. These models have certain parameters and are conceived from curves that only have the general aspect of a real learning curve. In this paper, we propose two new models that have more parameters and are conceived from real learning curves of nearest neighbour classifiers. These two main differences increase the chance for these new models to fit better the learning curve. We test these new models on one-input and two-class nearest neighbour classifiers.</p></div>","PeriodicalId":72089,"journal":{"name":"Advances in computational intelligence","volume":"2 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43674-022-00040-0.pdf","citationCount":"0","resultStr":"{\"title\":\"New models of classifier learning curves\",\"authors\":\"Vincent Berthiaume\",\"doi\":\"10.1007/s43674-022-00040-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In machine learning, a classifier has a certain learning curve i.e. the curve of the error/success probability as a function of the training set size. Finding the learning curve for a large interval of sizes takes a lot of processing time. A better method is to estimate the error probabilities only for few minimal sizes and use the pairs size-estimate as data points to model the learning curve. Searchers have tested different models. These models have certain parameters and are conceived from curves that only have the general aspect of a real learning curve. In this paper, we propose two new models that have more parameters and are conceived from real learning curves of nearest neighbour classifiers. These two main differences increase the chance for these new models to fit better the learning curve. We test these new models on one-input and two-class nearest neighbour classifiers.</p></div>\",\"PeriodicalId\":72089,\"journal\":{\"name\":\"Advances in computational intelligence\",\"volume\":\"2 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43674-022-00040-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in computational intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43674-022-00040-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in computational intelligence","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43674-022-00040-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在机器学习中,分类器具有特定的学习曲线,即作为训练集大小的函数的错误/成功概率的曲线。找到大尺寸间隔的学习曲线需要大量的处理时间。一种更好的方法是仅对少数最小大小估计误差概率,并使用对大小估计作为数据点来对学习曲线进行建模。搜索人员测试了不同的模型。这些模型具有某些参数,并且是从仅具有真实学习曲线的一般方面的曲线中构思的。在本文中,我们提出了两个新的模型,它们具有更多的参数,并且是根据最近邻分类器的真实学习曲线构思的。这两个主要差异增加了这些新模型更好地拟合学习曲线的机会。我们在单输入和两类最近邻分类器上测试了这些新模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New models of classifier learning curves

In machine learning, a classifier has a certain learning curve i.e. the curve of the error/success probability as a function of the training set size. Finding the learning curve for a large interval of sizes takes a lot of processing time. A better method is to estimate the error probabilities only for few minimal sizes and use the pairs size-estimate as data points to model the learning curve. Searchers have tested different models. These models have certain parameters and are conceived from curves that only have the general aspect of a real learning curve. In this paper, we propose two new models that have more parameters and are conceived from real learning curves of nearest neighbour classifiers. These two main differences increase the chance for these new models to fit better the learning curve. We test these new models on one-input and two-class nearest neighbour classifiers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-linear machine learning with sample perturbation augments leukemia relapse prognostics from single-cell proteomics measurements ARBP: antibiotic-resistant bacteria propagation bio-inspired algorithm and its performance on benchmark functions Detection and classification of diabetic retinopathy based on ensemble learning Office real estate price index forecasts through Gaussian process regressions for ten major Chinese cities Systematic micro-breaks affect concentration during cognitive comparison tasks: quantitative and qualitative measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1