区间值属性的混合单调决策树模型

Jiankai Chen, Zhongyan Li, Xin Wang, Junhai Zhai
{"title":"区间值属性的混合单调决策树模型","authors":"Jiankai Chen,&nbsp;Zhongyan Li,&nbsp;Xin Wang,&nbsp;Junhai Zhai","doi":"10.1007/s43674-021-00016-6","DOIUrl":null,"url":null,"abstract":"<div><p>The existing monotonic decision tree algorithms are based on a linearly ordered constraint that certain attributes are monotonously consistent with the decision, which could be called monotonic attributes, whereas others, called non-monotonic attributes. In practice, monotonic and non-monotonic attributes coexist in most classification tasks, and some attribute values are even evaluated as interval numbers. In this paper, we proposed a fuzzy rank-inconsistent rate based on probability degree to judge the monotonicity of interval numbers. Furthermore, we devised a hybrid model composed of monotonic and non-monotonic attributes to construct a mixed monotone decision tree for interval-valued data. Experiments on artificial and real-world data sets show that the proposed hybrid model is effective.</p></div>","PeriodicalId":72089,"journal":{"name":"Advances in computational intelligence","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43674-021-00016-6.pdf","citationCount":"6","resultStr":"{\"title\":\"A hybrid monotone decision tree model for interval-valued attributes\",\"authors\":\"Jiankai Chen,&nbsp;Zhongyan Li,&nbsp;Xin Wang,&nbsp;Junhai Zhai\",\"doi\":\"10.1007/s43674-021-00016-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The existing monotonic decision tree algorithms are based on a linearly ordered constraint that certain attributes are monotonously consistent with the decision, which could be called monotonic attributes, whereas others, called non-monotonic attributes. In practice, monotonic and non-monotonic attributes coexist in most classification tasks, and some attribute values are even evaluated as interval numbers. In this paper, we proposed a fuzzy rank-inconsistent rate based on probability degree to judge the monotonicity of interval numbers. Furthermore, we devised a hybrid model composed of monotonic and non-monotonic attributes to construct a mixed monotone decision tree for interval-valued data. Experiments on artificial and real-world data sets show that the proposed hybrid model is effective.</p></div>\",\"PeriodicalId\":72089,\"journal\":{\"name\":\"Advances in computational intelligence\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43674-021-00016-6.pdf\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in computational intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43674-021-00016-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in computational intelligence","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43674-021-00016-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

现有的单调决策树算法基于线性有序约束,即某些属性与决策单调一致,可以称为单调属性,而另一些则称为非单调属性。在实践中,单调和非单调属性在大多数分类任务中共存,一些属性值甚至被评估为区间数。本文提出了一种基于概率度的模糊秩不一致率来判断区间数的单调性。此外,我们设计了一个由单调和非单调属性组成的混合模型来构造区间值数据的混合单调决策树。在人工和真实世界数据集上的实验表明,所提出的混合模型是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A hybrid monotone decision tree model for interval-valued attributes

The existing monotonic decision tree algorithms are based on a linearly ordered constraint that certain attributes are monotonously consistent with the decision, which could be called monotonic attributes, whereas others, called non-monotonic attributes. In practice, monotonic and non-monotonic attributes coexist in most classification tasks, and some attribute values are even evaluated as interval numbers. In this paper, we proposed a fuzzy rank-inconsistent rate based on probability degree to judge the monotonicity of interval numbers. Furthermore, we devised a hybrid model composed of monotonic and non-monotonic attributes to construct a mixed monotone decision tree for interval-valued data. Experiments on artificial and real-world data sets show that the proposed hybrid model is effective.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-linear machine learning with sample perturbation augments leukemia relapse prognostics from single-cell proteomics measurements ARBP: antibiotic-resistant bacteria propagation bio-inspired algorithm and its performance on benchmark functions Detection and classification of diabetic retinopathy based on ensemble learning Office real estate price index forecasts through Gaussian process regressions for ten major Chinese cities Systematic micro-breaks affect concentration during cognitive comparison tasks: quantitative and qualitative measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1