{"title":"白蛋白与人乳铁蛋白融合对癌细胞迁移的抑制作用增强","authors":"Hana Nopia, Daisuke Kurimoto, Atsushi Sato","doi":"10.1007/s10534-022-00447-9","DOIUrl":null,"url":null,"abstract":"<div><p>The fusion of human serum albumin (HSA) with human lactoferrin (hLF) (designated as hLF-HSA) has improved the pharmacokinetic properties and anti-proliferative activities of hLF against cancer cells. In this study, we evaluated the anti-migratory activities of hLF and hLF-HSA against the human lung adenocarcinoma PC-14 cell line using wound healing and Boyden chamber assays. Despite the unexpected hLF-induced migration, hLF-HSA clearly demonstrated the complete inhibition of PC-14 cell migration. To examine the mechanism underlying the enhanced PC-14 cell migration by hLF alone but suppressed migration by hLF-HSA, we focused on the matrix metalloproteinase (MMP) family of endopeptidases because MMPs are often reported to play important roles in facilitating the migration and metastasis of cancer cells. Furthermore, hLF is a transactivator of MMP1 transcription. As expected, treatment of cells with hLF and hLF-HSA led to the upregulation and downregulation of MMP1, respectively. In contrast, MMP9 expression levels, which are often associated with cancer migration, were unchanged in the presence of either protein. An MMP inhibitor attenuated hLF-induced migration of PC-14 cells. Therefore, specific enhancement and suppression of MMP1 expression by hLF and hLF-HSA have been implicated as causes of a marked increase and decrease in PC-14 cell migration, respectively. In conclusion, the fusion of HSA with hLF (hLF-HSA) promoted its anti-migratory effects against cancer cells. Therefore, hLF-HSA is a promising anti-cancer drug candidate based on its improved anti-migratory activity towards cancer cells.</p></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"36 3","pages":"629 - 638"},"PeriodicalIF":4.1000,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10534-022-00447-9.pdf","citationCount":"2","resultStr":"{\"title\":\"Albumin fusion with human lactoferrin shows enhanced inhibition of cancer cell migration\",\"authors\":\"Hana Nopia, Daisuke Kurimoto, Atsushi Sato\",\"doi\":\"10.1007/s10534-022-00447-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The fusion of human serum albumin (HSA) with human lactoferrin (hLF) (designated as hLF-HSA) has improved the pharmacokinetic properties and anti-proliferative activities of hLF against cancer cells. In this study, we evaluated the anti-migratory activities of hLF and hLF-HSA against the human lung adenocarcinoma PC-14 cell line using wound healing and Boyden chamber assays. Despite the unexpected hLF-induced migration, hLF-HSA clearly demonstrated the complete inhibition of PC-14 cell migration. To examine the mechanism underlying the enhanced PC-14 cell migration by hLF alone but suppressed migration by hLF-HSA, we focused on the matrix metalloproteinase (MMP) family of endopeptidases because MMPs are often reported to play important roles in facilitating the migration and metastasis of cancer cells. Furthermore, hLF is a transactivator of MMP1 transcription. As expected, treatment of cells with hLF and hLF-HSA led to the upregulation and downregulation of MMP1, respectively. In contrast, MMP9 expression levels, which are often associated with cancer migration, were unchanged in the presence of either protein. An MMP inhibitor attenuated hLF-induced migration of PC-14 cells. Therefore, specific enhancement and suppression of MMP1 expression by hLF and hLF-HSA have been implicated as causes of a marked increase and decrease in PC-14 cell migration, respectively. In conclusion, the fusion of HSA with hLF (hLF-HSA) promoted its anti-migratory effects against cancer cells. Therefore, hLF-HSA is a promising anti-cancer drug candidate based on its improved anti-migratory activity towards cancer cells.</p></div>\",\"PeriodicalId\":491,\"journal\":{\"name\":\"Biometals\",\"volume\":\"36 3\",\"pages\":\"629 - 638\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2022-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10534-022-00447-9.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometals\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10534-022-00447-9\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometals","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10534-022-00447-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Albumin fusion with human lactoferrin shows enhanced inhibition of cancer cell migration
The fusion of human serum albumin (HSA) with human lactoferrin (hLF) (designated as hLF-HSA) has improved the pharmacokinetic properties and anti-proliferative activities of hLF against cancer cells. In this study, we evaluated the anti-migratory activities of hLF and hLF-HSA against the human lung adenocarcinoma PC-14 cell line using wound healing and Boyden chamber assays. Despite the unexpected hLF-induced migration, hLF-HSA clearly demonstrated the complete inhibition of PC-14 cell migration. To examine the mechanism underlying the enhanced PC-14 cell migration by hLF alone but suppressed migration by hLF-HSA, we focused on the matrix metalloproteinase (MMP) family of endopeptidases because MMPs are often reported to play important roles in facilitating the migration and metastasis of cancer cells. Furthermore, hLF is a transactivator of MMP1 transcription. As expected, treatment of cells with hLF and hLF-HSA led to the upregulation and downregulation of MMP1, respectively. In contrast, MMP9 expression levels, which are often associated with cancer migration, were unchanged in the presence of either protein. An MMP inhibitor attenuated hLF-induced migration of PC-14 cells. Therefore, specific enhancement and suppression of MMP1 expression by hLF and hLF-HSA have been implicated as causes of a marked increase and decrease in PC-14 cell migration, respectively. In conclusion, the fusion of HSA with hLF (hLF-HSA) promoted its anti-migratory effects against cancer cells. Therefore, hLF-HSA is a promising anti-cancer drug candidate based on its improved anti-migratory activity towards cancer cells.
期刊介绍:
BioMetals is the only established journal to feature the important role of metal ions in chemistry, biology, biochemistry, environmental science, and medicine. BioMetals is an international, multidisciplinary journal singularly devoted to the rapid publication of the fundamental advances of both basic and applied research in this field. BioMetals offers a forum for innovative research and clinical results on the structure and function of:
- metal ions
- metal chelates,
- siderophores,
- metal-containing proteins
- biominerals in all biosystems.
- BioMetals rapidly publishes original articles and reviews.
BioMetals is a journal for metals researchers who practice in medicine, biochemistry, pharmacology, toxicology, microbiology, cell biology, chemistry, and plant physiology who are based academic, industrial and government laboratories.