一个统一的基于分子宽度和电子密度的化学键概念

IF 16.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Wiley Interdisciplinary Reviews: Computational Molecular Science Pub Date : 2021-10-15 DOI:10.1002/wcms.1579
Ignacy Cukrowski
{"title":"一个统一的基于分子宽度和电子密度的化学键概念","authors":"Ignacy Cukrowski","doi":"10.1002/wcms.1579","DOIUrl":null,"url":null,"abstract":"<p>Chemical bonding is at heart but, not being a quantum mechanical-defined physical property of a system, is a subject of endless and often fruitless debates. Having so many and very different models of chemical bonding without knowing what this really is does not make it easier. There is, however, a general agreement that concentrating electron density (ED) in and delocalizing ED to internuclear region is always associated with minimizing system's energy and synonymous with chemical bonding. Fragment, atomic, localized, delocalized, and interatomic (FALDI)-based density analysis involves entire space occupied by a molecule. From this molecular-wide and density-based methodology, it is possible to quantify localized and delocalized by all atoms ED at any coordinate <b>r</b>, including critical points on Bader's molecular graphs. Each atom and atom-pair contributions of delocalized density are quantified to reveal major players in the all-atom and molecular-wide chemical bonding. Partitioning the total ED to individual molecular or natural orbital's contributions using MO-ED and MO-DI methods, in conjunction with one dimensional (1D) cross section methodology, generates an orbital-based molecular-wide picture. This provides, besides reproducing results from FALDI, qualitative description of orbitals' nature that correlates well with classical understanding of bonding, nonbonding, and antibonding orbitals. A qualitative and quantitative impact of an immediate, distant, or molecular-wide molecular environment on intra- and intermolecular di-atomic, intra- and interfragment interactions is the domain of the Fragment Attributed Molecular System Energy Change (FAMSEC) family of methods. The FALDI, FAMSEC, MO-ED, MO-DI, and 1D cross section methodologies provide consistent and quantifiable physics-based picture of molecular-wide chemical bonding without invoking unicorns, such as a chemical bond.</p><p>This article is categorized under:\n </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"12 3","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.1579","citationCount":"4","resultStr":"{\"title\":\"A unified molecular-wide and electron density based concept of chemical bonding\",\"authors\":\"Ignacy Cukrowski\",\"doi\":\"10.1002/wcms.1579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Chemical bonding is at heart but, not being a quantum mechanical-defined physical property of a system, is a subject of endless and often fruitless debates. Having so many and very different models of chemical bonding without knowing what this really is does not make it easier. There is, however, a general agreement that concentrating electron density (ED) in and delocalizing ED to internuclear region is always associated with minimizing system's energy and synonymous with chemical bonding. Fragment, atomic, localized, delocalized, and interatomic (FALDI)-based density analysis involves entire space occupied by a molecule. From this molecular-wide and density-based methodology, it is possible to quantify localized and delocalized by all atoms ED at any coordinate <b>r</b>, including critical points on Bader's molecular graphs. Each atom and atom-pair contributions of delocalized density are quantified to reveal major players in the all-atom and molecular-wide chemical bonding. Partitioning the total ED to individual molecular or natural orbital's contributions using MO-ED and MO-DI methods, in conjunction with one dimensional (1D) cross section methodology, generates an orbital-based molecular-wide picture. This provides, besides reproducing results from FALDI, qualitative description of orbitals' nature that correlates well with classical understanding of bonding, nonbonding, and antibonding orbitals. A qualitative and quantitative impact of an immediate, distant, or molecular-wide molecular environment on intra- and intermolecular di-atomic, intra- and interfragment interactions is the domain of the Fragment Attributed Molecular System Energy Change (FAMSEC) family of methods. The FALDI, FAMSEC, MO-ED, MO-DI, and 1D cross section methodologies provide consistent and quantifiable physics-based picture of molecular-wide chemical bonding without invoking unicorns, such as a chemical bond.</p><p>This article is categorized under:\\n </p>\",\"PeriodicalId\":236,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews: Computational Molecular Science\",\"volume\":\"12 3\",\"pages\":\"\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2021-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.1579\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews: Computational Molecular Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/wcms.1579\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Computational Molecular Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/wcms.1579","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

化学键是核心,但它不是一个系统的量子力学定义的物理性质,是一个没完没了、往往毫无结果的辩论的主题。有这么多不同的化学键模型却不知道它到底是什么,这并不容易。然而,人们普遍认为,将电子密度集中在核间区并将其离域到核间区总是与最小化系统能量有关,并且与化学键是同义词。基于片段、原子、局部、非局部和原子间(FALDI)的密度分析涉及分子所占据的整个空间。从这种基于分子宽度和密度的方法中,可以量化任何坐标r上的所有原子ED的局域和非局域,包括Bader分子图上的临界点。每个原子和原子对离域密度的贡献被量化,以揭示全原子和分子范围化学键的主要参与者。使用MO-ED和MO-DI方法,结合一维(1D)横截面方法,将总ED划分为单个分子或自然轨道的贡献,生成基于轨道的分子范围图。这不仅重现了FALDI的结果,还提供了轨道性质的定性描述,这与对成键、非成键和反成键轨道的经典理解密切相关。直接的、遥远的或分子范围的分子环境对分子内和分子间双原子、片段内和片段间相互作用的定性和定量影响是片段归属分子系统能量变化(FAMSEC)方法家族的领域。FALDI、FAMSEC、MO-ED、MO-DI和1D截面方法提供了一致的、可量化的基于物理的分子范围化学键图像,而无需调用诸如化学键之类的独角兽。本文分类如下:
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A unified molecular-wide and electron density based concept of chemical bonding

Chemical bonding is at heart but, not being a quantum mechanical-defined physical property of a system, is a subject of endless and often fruitless debates. Having so many and very different models of chemical bonding without knowing what this really is does not make it easier. There is, however, a general agreement that concentrating electron density (ED) in and delocalizing ED to internuclear region is always associated with minimizing system's energy and synonymous with chemical bonding. Fragment, atomic, localized, delocalized, and interatomic (FALDI)-based density analysis involves entire space occupied by a molecule. From this molecular-wide and density-based methodology, it is possible to quantify localized and delocalized by all atoms ED at any coordinate r, including critical points on Bader's molecular graphs. Each atom and atom-pair contributions of delocalized density are quantified to reveal major players in the all-atom and molecular-wide chemical bonding. Partitioning the total ED to individual molecular or natural orbital's contributions using MO-ED and MO-DI methods, in conjunction with one dimensional (1D) cross section methodology, generates an orbital-based molecular-wide picture. This provides, besides reproducing results from FALDI, qualitative description of orbitals' nature that correlates well with classical understanding of bonding, nonbonding, and antibonding orbitals. A qualitative and quantitative impact of an immediate, distant, or molecular-wide molecular environment on intra- and intermolecular di-atomic, intra- and interfragment interactions is the domain of the Fragment Attributed Molecular System Energy Change (FAMSEC) family of methods. The FALDI, FAMSEC, MO-ED, MO-DI, and 1D cross section methodologies provide consistent and quantifiable physics-based picture of molecular-wide chemical bonding without invoking unicorns, such as a chemical bond.

This article is categorized under:

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wiley Interdisciplinary Reviews: Computational Molecular Science
Wiley Interdisciplinary Reviews: Computational Molecular Science CHEMISTRY, MULTIDISCIPLINARY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
28.90
自引率
1.80%
发文量
52
审稿时长
6-12 weeks
期刊介绍: Computational molecular sciences harness the power of rigorous chemical and physical theories, employing computer-based modeling, specialized hardware, software development, algorithm design, and database management to explore and illuminate every facet of molecular sciences. These interdisciplinary approaches form a bridge between chemistry, biology, and materials sciences, establishing connections with adjacent application-driven fields in both chemistry and biology. WIREs Computational Molecular Science stands as a platform to comprehensively review and spotlight research from these dynamic and interconnected fields.
期刊最新文献
Issue Information Embedded Many-Body Green's Function Methods for Electronic Excitations in Complex Molecular Systems ROBERT: Bridging the Gap Between Machine Learning and Chemistry Advanced quantum and semiclassical methods for simulating photoinduced molecular dynamics and spectroscopy Computational design of energy-related materials: From first-principles calculations to machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1