{"title":"教程:用于质谱的激光喷雾电离和相关的基于激光的电离方法","authors":"Sarah Trimpin","doi":"10.1002/mas.21762","DOIUrl":null,"url":null,"abstract":"<p>This <i>Tutorial</i> is to provide a summary of parameters useful for successful outcomes of laserspray ionization (LSI) and related methods that employ a laser to ablate a matrix:analyte sample to produce highly charged ions. In these methods the purpose of the laser is to transfer matrix-analyte clusters into the gas phase. Ions are hypothesized to be produced by a thermal process where emitted matrix:analyte gas-phase particles/clusters are charged and loss of matrix from the charged particles leads to release of the analyte ions into the gas phase. The thermal energy responsible for the charge-separation process is relatively low and not necessarily supplied by the laser; a heated inlet tube linking atmospheric pressure with the first vacuum stage of a mass spectrometer is sufficient. The inlet becomes the “ion source”, and <i>inter alia</i>, pressure, temperature, and the matrix, which can be a solid, liquid, or combinations, become critical parameters. Injecting matrix:analyte into a heated inlet tube using laser ablation, a shockwave, or simply tapping, all produce the similar mass spectra. Applications are provided that showcase new opportunities in the field of mass spectrometry.</p>","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":"42 5","pages":"2234-2267"},"PeriodicalIF":6.9000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A tutorial: Laserspray ionization and related laser-based ionization methods for use in mass spectrometry\",\"authors\":\"Sarah Trimpin\",\"doi\":\"10.1002/mas.21762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This <i>Tutorial</i> is to provide a summary of parameters useful for successful outcomes of laserspray ionization (LSI) and related methods that employ a laser to ablate a matrix:analyte sample to produce highly charged ions. In these methods the purpose of the laser is to transfer matrix-analyte clusters into the gas phase. Ions are hypothesized to be produced by a thermal process where emitted matrix:analyte gas-phase particles/clusters are charged and loss of matrix from the charged particles leads to release of the analyte ions into the gas phase. The thermal energy responsible for the charge-separation process is relatively low and not necessarily supplied by the laser; a heated inlet tube linking atmospheric pressure with the first vacuum stage of a mass spectrometer is sufficient. The inlet becomes the “ion source”, and <i>inter alia</i>, pressure, temperature, and the matrix, which can be a solid, liquid, or combinations, become critical parameters. Injecting matrix:analyte into a heated inlet tube using laser ablation, a shockwave, or simply tapping, all produce the similar mass spectra. Applications are provided that showcase new opportunities in the field of mass spectrometry.</p>\",\"PeriodicalId\":206,\"journal\":{\"name\":\"Mass Spectrometry Reviews\",\"volume\":\"42 5\",\"pages\":\"2234-2267\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mass Spectrometry Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mas.21762\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mass Spectrometry Reviews","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mas.21762","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
A tutorial: Laserspray ionization and related laser-based ionization methods for use in mass spectrometry
This Tutorial is to provide a summary of parameters useful for successful outcomes of laserspray ionization (LSI) and related methods that employ a laser to ablate a matrix:analyte sample to produce highly charged ions. In these methods the purpose of the laser is to transfer matrix-analyte clusters into the gas phase. Ions are hypothesized to be produced by a thermal process where emitted matrix:analyte gas-phase particles/clusters are charged and loss of matrix from the charged particles leads to release of the analyte ions into the gas phase. The thermal energy responsible for the charge-separation process is relatively low and not necessarily supplied by the laser; a heated inlet tube linking atmospheric pressure with the first vacuum stage of a mass spectrometer is sufficient. The inlet becomes the “ion source”, and inter alia, pressure, temperature, and the matrix, which can be a solid, liquid, or combinations, become critical parameters. Injecting matrix:analyte into a heated inlet tube using laser ablation, a shockwave, or simply tapping, all produce the similar mass spectra. Applications are provided that showcase new opportunities in the field of mass spectrometry.
期刊介绍:
The aim of the journal Mass Spectrometry Reviews is to publish well-written reviews in selected topics in the various sub-fields of mass spectrometry as a means to summarize the research that has been performed in that area, to focus attention of other researchers, to critically review the published material, and to stimulate further research in that area.
The scope of the published reviews include, but are not limited to topics, such as theoretical treatments, instrumental design, ionization methods, analyzers, detectors, application to the qualitative and quantitative analysis of various compounds or elements, basic ion chemistry and structure studies, ion energetic studies, and studies on biomolecules, polymers, etc.