{"title":"金属纳米材料在反应环境中的结构研究","authors":"Yu Han, Xinyi Duan, Beien Zhu, Yi Gao","doi":"10.1002/wcms.1587","DOIUrl":null,"url":null,"abstract":"<p>Metal nanomaterials are of great importance in the field of heterogeneous catalysis. In general, the catalytic performances of metal nanomaterials are determined by the structures. However, far from being static, dynamic reconstruction of metal nanomaterials constantly occurs in reactive environments, resulting in different catalytic activities. This review summarizes the latest progress of theoretical understanding of the driving forces for the structural changes. In the first part, some typical ex situ and in situ experimental observations of catalysts in reactive environments are briefly introduced, including the changes of shape, size, and alloy composition of metal or bimetallic nanomaterials. Next, we review the state-of-the-art advancement of the theoretical calculations and simulation methods to understand these experimental observations, and categorize them according to the different driving forces, for example, the oxidation and reduction effects, adsorption-induced reconstruction. Moreover, this review provides many examples for the quantitative agreement between theoretical modeling and experimental observations, which indicates the potential applications for the rational design of high-performance metal nanocatalysts in real reactions.</p><p>This article is categorized under:\n </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"12 4","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2021-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Insights into structure of metal nanomaterials in reactive environments\",\"authors\":\"Yu Han, Xinyi Duan, Beien Zhu, Yi Gao\",\"doi\":\"10.1002/wcms.1587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Metal nanomaterials are of great importance in the field of heterogeneous catalysis. In general, the catalytic performances of metal nanomaterials are determined by the structures. However, far from being static, dynamic reconstruction of metal nanomaterials constantly occurs in reactive environments, resulting in different catalytic activities. This review summarizes the latest progress of theoretical understanding of the driving forces for the structural changes. In the first part, some typical ex situ and in situ experimental observations of catalysts in reactive environments are briefly introduced, including the changes of shape, size, and alloy composition of metal or bimetallic nanomaterials. Next, we review the state-of-the-art advancement of the theoretical calculations and simulation methods to understand these experimental observations, and categorize them according to the different driving forces, for example, the oxidation and reduction effects, adsorption-induced reconstruction. Moreover, this review provides many examples for the quantitative agreement between theoretical modeling and experimental observations, which indicates the potential applications for the rational design of high-performance metal nanocatalysts in real reactions.</p><p>This article is categorized under:\\n </p>\",\"PeriodicalId\":236,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews: Computational Molecular Science\",\"volume\":\"12 4\",\"pages\":\"\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2021-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews: Computational Molecular Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/wcms.1587\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Computational Molecular Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/wcms.1587","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Insights into structure of metal nanomaterials in reactive environments
Metal nanomaterials are of great importance in the field of heterogeneous catalysis. In general, the catalytic performances of metal nanomaterials are determined by the structures. However, far from being static, dynamic reconstruction of metal nanomaterials constantly occurs in reactive environments, resulting in different catalytic activities. This review summarizes the latest progress of theoretical understanding of the driving forces for the structural changes. In the first part, some typical ex situ and in situ experimental observations of catalysts in reactive environments are briefly introduced, including the changes of shape, size, and alloy composition of metal or bimetallic nanomaterials. Next, we review the state-of-the-art advancement of the theoretical calculations and simulation methods to understand these experimental observations, and categorize them according to the different driving forces, for example, the oxidation and reduction effects, adsorption-induced reconstruction. Moreover, this review provides many examples for the quantitative agreement between theoretical modeling and experimental observations, which indicates the potential applications for the rational design of high-performance metal nanocatalysts in real reactions.
期刊介绍:
Computational molecular sciences harness the power of rigorous chemical and physical theories, employing computer-based modeling, specialized hardware, software development, algorithm design, and database management to explore and illuminate every facet of molecular sciences. These interdisciplinary approaches form a bridge between chemistry, biology, and materials sciences, establishing connections with adjacent application-driven fields in both chemistry and biology. WIREs Computational Molecular Science stands as a platform to comprehensively review and spotlight research from these dynamic and interconnected fields.