金属-三唑酸-框架衍生的具有分级孔隙度的单原子氧还原反应催化剂

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2021-10-26 DOI:10.1002/anie.202113895
Linyu Hu, Chunlong Dai, Liwei Chen, Yuhao Zhu, Yuchen Hao, Dr. Qinghua Zhang, Prof.?Dr. Lin Gu, Prof.?Dr. Xiao Feng, Shuai Yuan, Dr. Lu Wang, Prof.?Dr. Bo Wang
{"title":"金属-三唑酸-框架衍生的具有分级孔隙度的单原子氧还原反应催化剂","authors":"Linyu Hu,&nbsp;Chunlong Dai,&nbsp;Liwei Chen,&nbsp;Yuhao Zhu,&nbsp;Yuchen Hao,&nbsp;Dr. Qinghua Zhang,&nbsp;Prof.?Dr. Lin Gu,&nbsp;Prof.?Dr. Xiao Feng,&nbsp;Shuai Yuan,&nbsp;Dr. Lu Wang,&nbsp;Prof.?Dr. Bo Wang","doi":"10.1002/anie.202113895","DOIUrl":null,"url":null,"abstract":"<p>The construction of single-atom catalysts (SACs) with high single atom densities, favorable electronic structures and fast mass transfer is highly desired. We have utilized metal-triazolate (MET) frameworks, a subclass of metal–organic frameworks (MOFs) with high N content, as precursors since they can enhance the density and regulate the electronic structure of single-atom sites, as well as generate abundant mesopores simultaneously. Fe single atoms dispersed in a hierarchically porous N-doped carbon matrix with high metal content (2.78 wt %) and a FeN<sub>4</sub>Cl<sub>1</sub> configuration (FeN<sub>4</sub>Cl<sub>1</sub>/NC), as well as mesopores with a pore:volume ratio of 0.92, were obtained via the pyrolysis of a Zn/Fe-bimetallic MET modified with 4,5-dichloroimidazole. FeN<sub>4</sub>Cl<sub>1</sub>/NC exhibits excellent oxygen reduction reaction (ORR) activity in both alkaline and acidic electrolytes. Density functional theory calculations confirm that Cl can optimize the adsorption free energy of Fe sites to *OH, thereby promoting the ORR process. The catalyst demonstrates great potential in zinc-air batteries. This strategy selects, designs, and adjusts MOFs as precursors for high-performance SACs.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":"{\"title\":\"Metal-Triazolate-Framework-Derived FeN4Cl1 Single-Atom Catalysts with Hierarchical Porosity for the Oxygen Reduction Reaction\",\"authors\":\"Linyu Hu,&nbsp;Chunlong Dai,&nbsp;Liwei Chen,&nbsp;Yuhao Zhu,&nbsp;Yuchen Hao,&nbsp;Dr. Qinghua Zhang,&nbsp;Prof.?Dr. Lin Gu,&nbsp;Prof.?Dr. Xiao Feng,&nbsp;Shuai Yuan,&nbsp;Dr. Lu Wang,&nbsp;Prof.?Dr. Bo Wang\",\"doi\":\"10.1002/anie.202113895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The construction of single-atom catalysts (SACs) with high single atom densities, favorable electronic structures and fast mass transfer is highly desired. We have utilized metal-triazolate (MET) frameworks, a subclass of metal–organic frameworks (MOFs) with high N content, as precursors since they can enhance the density and regulate the electronic structure of single-atom sites, as well as generate abundant mesopores simultaneously. Fe single atoms dispersed in a hierarchically porous N-doped carbon matrix with high metal content (2.78 wt %) and a FeN<sub>4</sub>Cl<sub>1</sub> configuration (FeN<sub>4</sub>Cl<sub>1</sub>/NC), as well as mesopores with a pore:volume ratio of 0.92, were obtained via the pyrolysis of a Zn/Fe-bimetallic MET modified with 4,5-dichloroimidazole. FeN<sub>4</sub>Cl<sub>1</sub>/NC exhibits excellent oxygen reduction reaction (ORR) activity in both alkaline and acidic electrolytes. Density functional theory calculations confirm that Cl can optimize the adsorption free energy of Fe sites to *OH, thereby promoting the ORR process. The catalyst demonstrates great potential in zinc-air batteries. This strategy selects, designs, and adjusts MOFs as precursors for high-performance SACs.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2021-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"76\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202113895\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202113895","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 76

摘要

构建具有高单原子密度、良好的电子结构和快速传质的单原子催化剂(SACs)是迫切需要的。我们利用金属-三氮酸盐(MET)框架作为前驱体,因为它可以提高单原子位点的密度和调节电子结构,同时产生丰富的介孔。通过热解4,5-二氯咪唑修饰的Zn/Fe双金属MET,获得了Fe单原子分散在高金属含量(2.78 wt %)和FeN4Cl1构型(FeN4Cl1/NC)的分层多孔n掺杂碳基体中,孔体积比为0.92的介孔。FeN4Cl1/NC在碱性和酸性电解质中均表现出良好的氧还原反应(ORR)活性。密度泛函理论计算证实Cl可以优化Fe位对*OH的吸附自由能,从而促进ORR过程。该催化剂在锌空气电池中显示出巨大的潜力。该策略选择、设计和调整mof作为高性能sac的前体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Metal-Triazolate-Framework-Derived FeN4Cl1 Single-Atom Catalysts with Hierarchical Porosity for the Oxygen Reduction Reaction

The construction of single-atom catalysts (SACs) with high single atom densities, favorable electronic structures and fast mass transfer is highly desired. We have utilized metal-triazolate (MET) frameworks, a subclass of metal–organic frameworks (MOFs) with high N content, as precursors since they can enhance the density and regulate the electronic structure of single-atom sites, as well as generate abundant mesopores simultaneously. Fe single atoms dispersed in a hierarchically porous N-doped carbon matrix with high metal content (2.78 wt %) and a FeN4Cl1 configuration (FeN4Cl1/NC), as well as mesopores with a pore:volume ratio of 0.92, were obtained via the pyrolysis of a Zn/Fe-bimetallic MET modified with 4,5-dichloroimidazole. FeN4Cl1/NC exhibits excellent oxygen reduction reaction (ORR) activity in both alkaline and acidic electrolytes. Density functional theory calculations confirm that Cl can optimize the adsorption free energy of Fe sites to *OH, thereby promoting the ORR process. The catalyst demonstrates great potential in zinc-air batteries. This strategy selects, designs, and adjusts MOFs as precursors for high-performance SACs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Electrochemical identification and quantification of through-plane proton channels in graphene oxide membranes Enhancing Carrier Behavior via Controlled Molecular Film Formation Engineering Leads to Significant Improvement in Electroluminescence Fluorine-lodged high-valent high-entropy layered double hydroxide for efficient, long-lasting zinc-air batteries Control of Dynamic Chirality in Donor-Acceptor Fluorophores Polyphenol Oxidase Activity on Guaiacyl and Syringyl Lignin Units
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1