Muhammad Fahim;Vishal Sharma;Ruth Hunter;Trung Q. Duong
{"title":"健康老龄化:一个在数字孪生中集成智能的深层元类序列模型","authors":"Muhammad Fahim;Vishal Sharma;Ruth Hunter;Trung Q. Duong","doi":"10.1109/JTEHM.2023.3274357","DOIUrl":null,"url":null,"abstract":"Objective: The behavior monitoring of older adults in their own home and enabling daily-life activity analysis to healthcare practitioner is a key challenge. Methods and procedures: Our framework replicates the elderly home in digital space which can provide an unobtrusive way to monitor the resident&ahat;s daily life activities. The learning challenges posed by different performed activities at home are solved by introducing the deep meta-class sequence model. The notion is to group the set of activities into a single meta-class according to the nature of the activities. It helps the learning process, which is based on long short-term memory (LSTM) to learn feature space abstraction. Each meta-class abstraction is further decomposed to an individual activity performed by the elderly at home. Results: The experiments are carried out over the Center for Advanced Studies in Adaptive Systems dataset and proposed model outperforms as compared to baseline models. Clinical impact: Our findings demonstrate a robust framework to digitally monitor the elderly behavior, which is beneficial for healthcare practitioners to understand the level of support the elderly needed to perform the daily tasks or potential risk of an emergency in their own homes.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"11 ","pages":"330-340"},"PeriodicalIF":3.7000,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6221039/9961067/10121437.pdf","citationCount":"0","resultStr":"{\"title\":\"Healthy Aging: A Deep Meta-Class Sequence Model to Integrate Intelligence in Digital Twin\",\"authors\":\"Muhammad Fahim;Vishal Sharma;Ruth Hunter;Trung Q. Duong\",\"doi\":\"10.1109/JTEHM.2023.3274357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: The behavior monitoring of older adults in their own home and enabling daily-life activity analysis to healthcare practitioner is a key challenge. Methods and procedures: Our framework replicates the elderly home in digital space which can provide an unobtrusive way to monitor the resident&ahat;s daily life activities. The learning challenges posed by different performed activities at home are solved by introducing the deep meta-class sequence model. The notion is to group the set of activities into a single meta-class according to the nature of the activities. It helps the learning process, which is based on long short-term memory (LSTM) to learn feature space abstraction. Each meta-class abstraction is further decomposed to an individual activity performed by the elderly at home. Results: The experiments are carried out over the Center for Advanced Studies in Adaptive Systems dataset and proposed model outperforms as compared to baseline models. Clinical impact: Our findings demonstrate a robust framework to digitally monitor the elderly behavior, which is beneficial for healthcare practitioners to understand the level of support the elderly needed to perform the daily tasks or potential risk of an emergency in their own homes.\",\"PeriodicalId\":54255,\"journal\":{\"name\":\"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm\",\"volume\":\"11 \",\"pages\":\"330-340\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/6221039/9961067/10121437.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10121437/\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10121437/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Healthy Aging: A Deep Meta-Class Sequence Model to Integrate Intelligence in Digital Twin
Objective: The behavior monitoring of older adults in their own home and enabling daily-life activity analysis to healthcare practitioner is a key challenge. Methods and procedures: Our framework replicates the elderly home in digital space which can provide an unobtrusive way to monitor the resident&ahat;s daily life activities. The learning challenges posed by different performed activities at home are solved by introducing the deep meta-class sequence model. The notion is to group the set of activities into a single meta-class according to the nature of the activities. It helps the learning process, which is based on long short-term memory (LSTM) to learn feature space abstraction. Each meta-class abstraction is further decomposed to an individual activity performed by the elderly at home. Results: The experiments are carried out over the Center for Advanced Studies in Adaptive Systems dataset and proposed model outperforms as compared to baseline models. Clinical impact: Our findings demonstrate a robust framework to digitally monitor the elderly behavior, which is beneficial for healthcare practitioners to understand the level of support the elderly needed to perform the daily tasks or potential risk of an emergency in their own homes.
期刊介绍:
The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.