激活核受体RAR, RXR和LXR不会减少铜酮诱导的小鼠脱髓鞘

Davina Kruczek, T. Clarner, C. Beyer, M. Kipp, J. Mey
{"title":"激活核受体RAR, RXR和LXR不会减少铜酮诱导的小鼠脱髓鞘","authors":"Davina Kruczek, T. Clarner, C. Beyer, M. Kipp, J. Mey","doi":"10.11131/2015/101163","DOIUrl":null,"url":null,"abstract":"Experiments with animal models of multiple sclerosis have shown that the expression of retinoid X receptors (RXR) increases during demyelination and that RXR is involved in the regulation of remyelination. After ligand binding RXRs form heterodimeric transcription factors with other nuclear receptor (NR) families including the retinoic acid receptors (RAR) and liver X receptors (LXR). We tested whether activation of these nuclear receptor complexes reduces pathological demyelination using the cuprizone mouse model. Cuprizone, which causes oligodendrocyte degeneration, was given for three weeks as a food additive. For the activation of nuclear receptors mice were treated with daily i.p. injections of agonists for RXR (9-cis RA), RAR (all-trans RA), and LXR (T0901317). Myelin status, oligodendrocyte survival, astrogliosis, microglial activation, and axon density were monitored with immunohistochemistry and evaluated quantitatively. Three weeks of cuprizone feeding caused severe demyelination and significantly raised the number of Iba1 immunoreactive microglia cells in the caudal corpus callosum. This increase of microglia activity was reduced with 9-cis RA treatment but was enhanced with all-trans RA and was not affected by T0901317. Nuclear receptor activation did not influence the degree of demyelination, oligodendrocyte survival, astrogliosis, or axonal preservation. We conclude that RXR activation, although affecting Iba1-positive microglia, does not protect oligodendrocytes from cuprizone toxicity and does not induce compensatory mechanisms in the initial phase of demyelination.","PeriodicalId":30720,"journal":{"name":"Nuclear Receptor Research","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Activation of Nuclear Receptors RAR, RXR, and LXR Does Not Reduce Cuprizone-Induced Demyelination in Mice\",\"authors\":\"Davina Kruczek, T. Clarner, C. Beyer, M. Kipp, J. Mey\",\"doi\":\"10.11131/2015/101163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Experiments with animal models of multiple sclerosis have shown that the expression of retinoid X receptors (RXR) increases during demyelination and that RXR is involved in the regulation of remyelination. After ligand binding RXRs form heterodimeric transcription factors with other nuclear receptor (NR) families including the retinoic acid receptors (RAR) and liver X receptors (LXR). We tested whether activation of these nuclear receptor complexes reduces pathological demyelination using the cuprizone mouse model. Cuprizone, which causes oligodendrocyte degeneration, was given for three weeks as a food additive. For the activation of nuclear receptors mice were treated with daily i.p. injections of agonists for RXR (9-cis RA), RAR (all-trans RA), and LXR (T0901317). Myelin status, oligodendrocyte survival, astrogliosis, microglial activation, and axon density were monitored with immunohistochemistry and evaluated quantitatively. Three weeks of cuprizone feeding caused severe demyelination and significantly raised the number of Iba1 immunoreactive microglia cells in the caudal corpus callosum. This increase of microglia activity was reduced with 9-cis RA treatment but was enhanced with all-trans RA and was not affected by T0901317. Nuclear receptor activation did not influence the degree of demyelination, oligodendrocyte survival, astrogliosis, or axonal preservation. We conclude that RXR activation, although affecting Iba1-positive microglia, does not protect oligodendrocytes from cuprizone toxicity and does not induce compensatory mechanisms in the initial phase of demyelination.\",\"PeriodicalId\":30720,\"journal\":{\"name\":\"Nuclear Receptor Research\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Receptor Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11131/2015/101163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Receptor Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11131/2015/101163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

多发性硬化症动物模型实验表明,类维甲酸X受体(retinoid X receptor, RXR)在脱髓鞘过程中表达增加,RXR参与了髓鞘再生的调控。配体结合后,RXRs与其他核受体(NR)家族形成异二聚体转录因子,包括视黄酸受体(RAR)和肝X受体(LXR)。我们测试了激活这些核受体复合物是否减少病理性脱髓鞘使用铜鼠模型。导致少突胶质细胞退化的铜酮作为食品添加剂服用了三周。为了激活核受体,小鼠每天腹腔注射RXR(9-顺式RA)、RAR(全反式RA)和LXR (T0901317)激动剂。髓磷脂状态、少突胶质细胞存活、星形胶质形成、小胶质细胞活化和轴突密度用免疫组织化学监测并定量评估。三周的铜酮喂养引起严重的脱髓鞘,并显著增加尾侧胼胝体中Iba1免疫反应性小胶质细胞的数量。9-顺式RA治疗降低了小胶质细胞活性的增加,但全反式RA治疗增强了小胶质细胞活性,T0901317不受影响。核受体激活不影响脱髓鞘、少突胶质细胞存活、星形胶质细胞形成或轴突保存的程度。我们得出结论,RXR激活虽然影响iba1阳性小胶质细胞,但不能保护少突胶质细胞免受铜酮毒性的影响,也不会在脱髓鞘的初始阶段诱导代偿机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Activation of Nuclear Receptors RAR, RXR, and LXR Does Not Reduce Cuprizone-Induced Demyelination in Mice
Experiments with animal models of multiple sclerosis have shown that the expression of retinoid X receptors (RXR) increases during demyelination and that RXR is involved in the regulation of remyelination. After ligand binding RXRs form heterodimeric transcription factors with other nuclear receptor (NR) families including the retinoic acid receptors (RAR) and liver X receptors (LXR). We tested whether activation of these nuclear receptor complexes reduces pathological demyelination using the cuprizone mouse model. Cuprizone, which causes oligodendrocyte degeneration, was given for three weeks as a food additive. For the activation of nuclear receptors mice were treated with daily i.p. injections of agonists for RXR (9-cis RA), RAR (all-trans RA), and LXR (T0901317). Myelin status, oligodendrocyte survival, astrogliosis, microglial activation, and axon density were monitored with immunohistochemistry and evaluated quantitatively. Three weeks of cuprizone feeding caused severe demyelination and significantly raised the number of Iba1 immunoreactive microglia cells in the caudal corpus callosum. This increase of microglia activity was reduced with 9-cis RA treatment but was enhanced with all-trans RA and was not affected by T0901317. Nuclear receptor activation did not influence the degree of demyelination, oligodendrocyte survival, astrogliosis, or axonal preservation. We conclude that RXR activation, although affecting Iba1-positive microglia, does not protect oligodendrocytes from cuprizone toxicity and does not induce compensatory mechanisms in the initial phase of demyelination.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Lipids and NMR: More Than Mere Acquaintances Carboxylesterases: Pharmacological Inhibition Regulated Expression and Transcriptional Involvement of Nuclear Receptors and other Transcription Factors SLICC 12 Criteria Are More Effectiveness than ACR 97 Score about Systemic Lupus Erythematosus Diagnosis Intrinsic Disorder in Nuclear Receptor Amino Termini: From Investigational Challenge to Therapeutic Opportunity Ligand-Induced Allosteric Effects Governing SR Signaling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1