Nicola Porta, A. Roncaglioni, M. Marzo, E. Benfenati
{"title":"QSAR方法筛选内分泌干扰物","authors":"Nicola Porta, A. Roncaglioni, M. Marzo, E. Benfenati","doi":"10.11131/2016/101203","DOIUrl":null,"url":null,"abstract":"The identification of endocrine disrupting chemicals (EDCs) is one of the important goals of environmental chemical hazard screening. We report on in silico methods addressing toxicological studies about EDCs with a special focus on the application of QSAR models for screening purpose. Since Estrogen-like (ER) activity has been extensively studied, the majority of the available models are based on ER-related endpoints. Some of these models are here reviewed and described. As example for their application, we screen an assembled dataset of candidate substitutes for some known EDCs belonging to the chemical classes of phthalates, bisphenols and parabens, selected considering their toxicological relevance and broad application, with the general aim of preliminary assessing their ED potential. The goal of the substitution processes is to advance inherently safer chemicals and products, consistent with the principles of green chemistry. Results suggest that the integration of a family of different models accounting for different endpoints can be a convenient way to describe ED as properly as possible and allow also both to increase the confidence of the predictions and to maximize the probability that most active compounds are correctly found.","PeriodicalId":30720,"journal":{"name":"Nuclear Receptor Research","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"QSAR Methods to Screen Endocrine Disruptors\",\"authors\":\"Nicola Porta, A. Roncaglioni, M. Marzo, E. Benfenati\",\"doi\":\"10.11131/2016/101203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The identification of endocrine disrupting chemicals (EDCs) is one of the important goals of environmental chemical hazard screening. We report on in silico methods addressing toxicological studies about EDCs with a special focus on the application of QSAR models for screening purpose. Since Estrogen-like (ER) activity has been extensively studied, the majority of the available models are based on ER-related endpoints. Some of these models are here reviewed and described. As example for their application, we screen an assembled dataset of candidate substitutes for some known EDCs belonging to the chemical classes of phthalates, bisphenols and parabens, selected considering their toxicological relevance and broad application, with the general aim of preliminary assessing their ED potential. The goal of the substitution processes is to advance inherently safer chemicals and products, consistent with the principles of green chemistry. Results suggest that the integration of a family of different models accounting for different endpoints can be a convenient way to describe ED as properly as possible and allow also both to increase the confidence of the predictions and to maximize the probability that most active compounds are correctly found.\",\"PeriodicalId\":30720,\"journal\":{\"name\":\"Nuclear Receptor Research\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Receptor Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11131/2016/101203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Receptor Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11131/2016/101203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The identification of endocrine disrupting chemicals (EDCs) is one of the important goals of environmental chemical hazard screening. We report on in silico methods addressing toxicological studies about EDCs with a special focus on the application of QSAR models for screening purpose. Since Estrogen-like (ER) activity has been extensively studied, the majority of the available models are based on ER-related endpoints. Some of these models are here reviewed and described. As example for their application, we screen an assembled dataset of candidate substitutes for some known EDCs belonging to the chemical classes of phthalates, bisphenols and parabens, selected considering their toxicological relevance and broad application, with the general aim of preliminary assessing their ED potential. The goal of the substitution processes is to advance inherently safer chemicals and products, consistent with the principles of green chemistry. Results suggest that the integration of a family of different models accounting for different endpoints can be a convenient way to describe ED as properly as possible and allow also both to increase the confidence of the predictions and to maximize the probability that most active compounds are correctly found.