{"title":"通过经验似然比较分布函数","authors":"I. McKeague, Yichuan Zhao","doi":"10.2202/1557-4679.1007","DOIUrl":null,"url":null,"abstract":"This paper develops empirical likelihood based simultaneous confidence bands for differences and ratios of two distribution functions from independent samples of right-censored survival data. The proposed confidence bands provide a flexible way of comparing treatments in biomedical settings, and bring empirical likelihood methods to bear on important target functions for which only Wald-type confidence bands have been available in the literature. The approach is illustrated with a real data example.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2006-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2202/1557-4679.1007","citationCount":"40","resultStr":"{\"title\":\"Comparing Distribution Functions via Empirical Likelihood\",\"authors\":\"I. McKeague, Yichuan Zhao\",\"doi\":\"10.2202/1557-4679.1007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops empirical likelihood based simultaneous confidence bands for differences and ratios of two distribution functions from independent samples of right-censored survival data. The proposed confidence bands provide a flexible way of comparing treatments in biomedical settings, and bring empirical likelihood methods to bear on important target functions for which only Wald-type confidence bands have been available in the literature. The approach is illustrated with a real data example.\",\"PeriodicalId\":50333,\"journal\":{\"name\":\"International Journal of Biostatistics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2006-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2202/1557-4679.1007\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2202/1557-4679.1007\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2202/1557-4679.1007","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparing Distribution Functions via Empirical Likelihood
This paper develops empirical likelihood based simultaneous confidence bands for differences and ratios of two distribution functions from independent samples of right-censored survival data. The proposed confidence bands provide a flexible way of comparing treatments in biomedical settings, and bring empirical likelihood methods to bear on important target functions for which only Wald-type confidence bands have been available in the literature. The approach is illustrated with a real data example.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.