一维筛选尺度尺度缩减的非参数方法

IF 1.2 4区 数学 International Journal of Biostatistics Pub Date : 2009-01-28 DOI:10.2202/1557-4679.1094
Xinhua Liu, Zhezhen Jin
{"title":"一维筛选尺度尺度缩减的非参数方法","authors":"Xinhua Liu, Zhezhen Jin","doi":"10.2202/1557-4679.1094","DOIUrl":null,"url":null,"abstract":"To select items from a uni-dimensional scale to create a reduced scale for disease screening, Liu and Jin (2007) developed a non-parametric method based on binary risk classification. When the measure for the risk of a disease is ordinal or quantitative, and possibly subject to random censoring, this method is inefficient because it requires dichotomizing the risk measure, which may cause information loss and sample size reduction. In this paper, we modify Harrell's C-index (1984) such that the concordance probability, used as a measure of the discrimination accuracy of a scale with integer valued scores, can be estimated consistently when data are subject to random censoring. By evaluating changes in discrimination accuracy with the addition or deletion of items, we can select risk-related items without specifying parametric models. The procedure first removes the least useful items from the full scale, then, applies forward stepwise selection to the remaining items to obtain a reduced scale whose discrimination accuracy matches or exceeds that of the full scale. A simulation study shows the procedure to have good finite sample performance. We illustrate the method using a data set of patients at risk of developing Alzheimer's disease, who were administered a 40-item test of olfactory function before their semi-annual follow-up assessment.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":"23 1","pages":"1-22"},"PeriodicalIF":1.2000,"publicationDate":"2009-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2202/1557-4679.1094","citationCount":"7","resultStr":"{\"title\":\"A Non-Parametric Approach to Scale Reduction for Uni-Dimensional Screening Scales\",\"authors\":\"Xinhua Liu, Zhezhen Jin\",\"doi\":\"10.2202/1557-4679.1094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To select items from a uni-dimensional scale to create a reduced scale for disease screening, Liu and Jin (2007) developed a non-parametric method based on binary risk classification. When the measure for the risk of a disease is ordinal or quantitative, and possibly subject to random censoring, this method is inefficient because it requires dichotomizing the risk measure, which may cause information loss and sample size reduction. In this paper, we modify Harrell's C-index (1984) such that the concordance probability, used as a measure of the discrimination accuracy of a scale with integer valued scores, can be estimated consistently when data are subject to random censoring. By evaluating changes in discrimination accuracy with the addition or deletion of items, we can select risk-related items without specifying parametric models. The procedure first removes the least useful items from the full scale, then, applies forward stepwise selection to the remaining items to obtain a reduced scale whose discrimination accuracy matches or exceeds that of the full scale. A simulation study shows the procedure to have good finite sample performance. We illustrate the method using a data set of patients at risk of developing Alzheimer's disease, who were administered a 40-item test of olfactory function before their semi-annual follow-up assessment.\",\"PeriodicalId\":50333,\"journal\":{\"name\":\"International Journal of Biostatistics\",\"volume\":\"23 1\",\"pages\":\"1-22\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2009-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2202/1557-4679.1094\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2202/1557-4679.1094\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2202/1557-4679.1094","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

为了从单维量表中选择项目来创建疾病筛查的简化量表,Liu和Jin(2007)开发了一种基于二元风险分类的非参数方法。当一种疾病的风险度量是有序的或定量的,并且可能受到随机审查时,这种方法是低效的,因为它需要对风险度量进行二分类,这可能导致信息丢失和样本量减少。在本文中,我们修改了Harrell的C-index(1984),使得当数据受到随机审查时,用于衡量整数值分数的尺度的判别精度的一致性概率能够得到一致的估计。通过评估增加或删除项目对识别精度的影响,我们可以在不指定参数模型的情况下选择与风险相关的项目。该方法首先从全量表中去除最无用的项目,然后对剩余的项目进行前向逐步选择,得到一个识别精度与全量表相当或超过全量表的缩减量表。仿真研究表明,该程序具有良好的有限样本性能。我们使用一组有患阿尔茨海默病风险的患者数据来说明该方法,这些患者在每半年进行一次随访评估之前进行了40项嗅觉功能测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Non-Parametric Approach to Scale Reduction for Uni-Dimensional Screening Scales
To select items from a uni-dimensional scale to create a reduced scale for disease screening, Liu and Jin (2007) developed a non-parametric method based on binary risk classification. When the measure for the risk of a disease is ordinal or quantitative, and possibly subject to random censoring, this method is inefficient because it requires dichotomizing the risk measure, which may cause information loss and sample size reduction. In this paper, we modify Harrell's C-index (1984) such that the concordance probability, used as a measure of the discrimination accuracy of a scale with integer valued scores, can be estimated consistently when data are subject to random censoring. By evaluating changes in discrimination accuracy with the addition or deletion of items, we can select risk-related items without specifying parametric models. The procedure first removes the least useful items from the full scale, then, applies forward stepwise selection to the remaining items to obtain a reduced scale whose discrimination accuracy matches or exceeds that of the full scale. A simulation study shows the procedure to have good finite sample performance. We illustrate the method using a data set of patients at risk of developing Alzheimer's disease, who were administered a 40-item test of olfactory function before their semi-annual follow-up assessment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
International Journal of Biostatistics
International Journal of Biostatistics Mathematics-Statistics and Probability
CiteScore
2.30
自引率
8.30%
发文量
28
期刊介绍: The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.
期刊最新文献
A multivariate Bayesian learning approach for improved detection of doping in athletes using urinary steroid profiles. A review of survival stacking: a method to cast survival regression analysis as a classification problem. Regression analysis of clustered current status data with informative cluster size under a transformed survival model. Prognostic adjustment with efficient estimators to unbiasedly leverage historical data in randomized trials. Bayesian covariance regression in functional data analysis with applications to functional brain imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1